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We present preliminary results of a new approach to the studyof the pion-pion system in the I=1

channel. The Bethe-Salpeter wave function of the two-pion system is computed on the ground

state and the first excited state. From these, we attempt to extract an interaction kernel (potential)

which can then be used to extract observables such as the phase shifts. In a first trial, we use

rather large pion massesmπ ∼ 1.05 GeV andmπ ∼ 0.68 GeV which do not allow rho decay.
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1. Introduction

In recent years, the I=1 two-pion system has attracted a lot of attention in lattice QCD. The
increase in computational power has finally allowed to generate fully dynamical QCD gauge con-
figurations at quark masses low enough for the rho resonance to be observed, promising a better
understanding of complex hadron processes from first principles. Recent studies [1, 2, 3, 4] all use
the de facto standard method, which is to apply Lüscher’s formula [5] or its extension to moving
frames [6], in order to relate the finite-size energy spectrum to the infinite volume phase shifts. The
main difficulty faced by this method is that one can only extract the phase shiftsat a few energies
on the lattice, making it difficult to reconstruct the continuous energy rangeand thus the physical
parameters of the system, especially around the resonance.

An alternative method has been recently introduced for the study of the nucleon-nucleon sys-
tem [7] then successfully extended, in particular, to various baryon-baryon systems [8]. The method
relies on the fact that the phase shifts can be obtained from the asymptotic behaviour of the Bethe-
Salpeter (BS) wave functions. An effective energy-independent, non-local potential can then be
introduced to account for the energy dependence of the BS wave functions, and as a result, the
energy dependence of the phase shifts.

This paper reports on our first attempt to apply this potential method to the I=1 two-pion
system. The meson masses considered here do not allow for the rho meson todecay, the goal being
to test the viability of the method in this channel before applying it to the study of the resonance.

2. BS wave function and potential

To describe two pions in the isospinI = 1 channel, we use the following operator

ππ(p) =
1√
2

[

π−(p)π+(−p)−π+(p)π−(−p)
]

, (2.1)

whereπ± are local interpolating operators for the pions. The Bethe-Salpeter (BS)wave function
in the center of mass frame is then defined in this channel as

Ψn(r) =
∫

d3p
(2π)3 eir·p〈0|ππ(p)|n〉 (2.2)

with |n〉 an eigenstate of QCD with the required quantum numbers. The BS wave function presents
an asymptotic behaviour [9] which allows to extract the scattering phase shift at the energy of the
eigenstate, in exactly the same way as the wave function in quantum mechanics.

By inversion of the energy-dependence of the wave functions [9], one can define a non-local
energy-independent potentialU such that the wave functionsΨn satisfy, for all eigenstates|n〉 with
energies below the inelastic threshold, the Schroedinger-like equation

(∇2+k2
n)Ψn(r) = mπ

∫

d3r′ U(r,r′)Ψn(r′). (2.3)

where the energy of the eigenstate|n〉 is En = 2
√

k2
n +m2

π .
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Since we only have access to a limited number of such BS wave functions on thelattice, we
can only obtain an approximation of the potential, such as a truncation of its derivative expansion.
The velocity expansion of the non-local potential in this channel is

U(r,r′) = [V0(r)+V2(r)∇2
r′ + . . . ]δ (r′− r). (2.4)

From the approximate potential, we can obtain approximate BS wave functions at all energies
below the inelastic threshold and extract phase shifts from them. The accuracy of the results thus
depend on the convergence of the derivative expansion.

3. Wave functions on the lattice

3.1 Eigenstates and correlation matrix

We noteO(t) a functional of the quark fields at timet, andO its corresponding operator in the
Heisenberg picture. In the limit of an infinite lattice in the time direction, we have

〈O1(t)O2(t0)〉= ∑
n
〈0|O1|n〉〈n|O2|0〉e−En(t−t0). (3.1)

where the brackets in the left-hand side denote the expectation value in lattice QCD.
Let {Oi} be a set ofN linearly-independent operators andMn j = 〈n|O j|0〉 theN×N matrix of

their mixing with theN lowest eigenstates. Their correlation matrixG is defined as

Gi j(t, t0) = 〈Oi(t)O j(t0)〉= M†D(t − t0)M+O(e−EN+1(t−t0)) (3.2)

whereD is diagonal with componentsDnn(t − t0) = e−En(t−t0).
DiagonalizingG−1(t ′, t0)G(t, t0) for several(t, t ′) pairs yields the energies, by fitting of the

eigenvalues with the formeEn(t ′−t), and the inverse mixingM−1 as the eigenvector matrix (up to
a normalization of the columns). This requirest andt ′ to be sufficiently separated fromt0 so that
contributions from eigenstates higher than|N〉 vanish in (3.2).

The determination ofM−1 and the energies allows to compute, for any operatorO and eigen-
staten ≤ N, the matrix element

〈0|O|n〉= eEn(t−t0) ∑
i≤N

(M−1)i,n〈O(t)Oi(t0)〉 (3.3)

and thus the BS wave functions as seen in the definition (2.2).

3.2 Source operators

The pion-pion I=1 channel contains both pion-pion scattering states and the rho meson. In
the pion mass region we investigate (mπ = 1.05 and 0.68 GeV), we expect the ground state to be
the rho meson, the first excited state to be the pion-pion scattering state with the lowest non-zero
momentum allowed on the lattice, and other eigenstates to have energies large enough to only
consider the first two (N = 2).

To approximate the pion-pion state we use the operatorO1 = ππ(p) with momentump = 2π
L ez

(L being the spatial extent of the lattice) and for the rho meson the operator

O2 = ρ =
1√
2

∑
x

[

ū(x)a · γu(x)− d̄(x)a · γd(x)
]

(3.4)

with a polarization taken parallel to that of the relative momentum of the pions,a = e3.
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〈ππ(q; t)ππ(p; t0)〉=

q −q

p−p

− − − (q ↔−q)

q −q

0

〈ππ(q; t)ρ(t0)〉= − (q ↔−q)

Figure 1: Decomposition in Wick contractions of the correlation functions corresponding toππ →
ππ andρ → ππ, appearing both in the correlation matrix (withq = p) and the wave function. Time
goes upward.

(a) (b) (c)

Figure 2: Computation method for some contractions. Springs link pairs of points which are pro-
jected one on the other by summing over stochastic noises. Open circles are explicit summations.
Straight (resp. broken) arrows are direct (sequential) propagators.

3.3 Correlation functions

The correlation matrix and the wave functions require the evaluation of correlation functions
of the form of (3.1), some of which are illustrated in Fig. 1. For the wave functions, the substitution
q ↔−q translates to parity conjugation, so we only need to compute the first parts. The diagrams
are computed, following [1], using adequate contractions of direct and sequential propagators using
stochastic noisesξ j as sources

Q(x, t|q, tS,ξ j) = ∑
y

D−1(x, t;y, tS)[eiq·yξ j(y)] (3.5)

W (x, t|k, t1|q, tS,ξ j) = ∑
z

D−1(x, t;z, t1)[eik·zQ(z, t1|q, tS,ξ j)]. (3.6)

Fig. 2a shows an example. The propagators are contracted explicitely at the sink (upper part
in the diagram) and implicitely at the source (lower part) by noise projection. InFig. 1 appear
rectangle- and triangle-like diagrams. They can be computed in the same way as the previous ex-
ample using sequential propagators, cf. Fig. 2b. However, while the momentum can be introduced
freely at the explicit summation (empty circle), sequential propagators havedefinite intermediate
momenta. This means that for the wave functions, which requires all possiblesink momentaq,
we need to compute as many sequential propagators. To remedy this, we introduce for the wave
functions another stochastic noise at the sink, cf. Fig. 2c, which allows to choose the two momenta
at the sink independently of the computation of the propagators.
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Figure 3: Wave functions for the first (left) and second (right) diagramsof theππ → ππ correlation
function in Fig. 1 (upper). Normalized such that the total wave function hasa norm 1. Computed
at t − t0 = 12 on the setκud = 0.1347.

4. Numerical setup

The preliminary results presented here were computed using theN f = 2+1 full QCD gauge
configurations of ILDG/JLDG generated by the CP-PACS and JLQCD Collaborations [10] on a
283×56 lattice with a RG improved gauge action atβ = 2.05 and aO(a) improved Wilson quark
action withcSW = 1.628. The lattice spacing isa = 0.0685 fm which makes for a lowest non-zero
momentum ofp = 2π/L = 0.65 GeV. We compare our results on two sets of configurations with
light quark hopping parametersκud = 0.1347 andκud = 0.1356, keepingκs = 0.1351 fixed.

The configurations withκud = 0.1347 have meson massesmπ = 1.05 GeV andmρ = 1.37
GeV. Those withκud = 0.1356 have massesmπ = 0.68 GeV andmρ = 1.10 GeV. In both cases,
the lowest energy of two free pions in the center of mass frame, 2

√

mπ +(2π/L)2, is significantly
larger than that of the rho meson at rest.

The quark propagators are computed with temporal Dirichlet boundary condition. We use
U(1) stochastic noises, 6 at the source and 20 at the sink. Wave functions areprojected in theT−

1

representation of the cubic group. Statistical errors are computed using the jackknife technique
although 2-dimensional plots are shown without error bars for clarity.

5. Preliminary results

We have seen that the wave functions (2.2) on the eigenstates are obtainedas combinations
(3.3) of the wave functions computed with the interpolating source operatorsππ(p) andρ, them-
selves computed as sum of Wick contractions ("diagrams"). The combinations are obtained by
diagonalization of the correlation matrix.

Figure 3 shows the contribution of the two kind of diagrams appearing in theππ → ππ wave
function. The left one, corresponding to the "parallel" diagram, is close tothe free wave function.
The right one, corresponding to the rectangle diagram, exhibits a very peaked and short-ranged
behaviour. The triangle diagram, Fig. 1 (lower), has a wave function very similar (up to a normal-
ization) to that of the rectangle one. The rho meson being the ground state, the quark-antiquark
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Figure 4: I=1 pion-pion wave functions on the ground (left) and first excited (right) states. Nor-
malized to 1. Computed att − t0 = 10 on the setκud = 0.1347.

pair propagating in the rectangle and triangle diagrams fromt to t0 can be thought as forming a rho
meson, which could explain why the two diagrams’ wave functions are similar and short-ranged.

The ground state’s wave function, Fig. 4 (left), can be obtained using either source operator
by saturation at large enough time separation. Takingππ(p) as source operator, we see that the
dominant contribution as time separation increases is from the rectangle diagram.

The first excited state’s wave function is shown Fig. 4 (right). We see thatthe dominant
contribution is this time coming from the parallel diagram. The wave functions is obtained with a
linear combination of the two source operators, which has for effect the cancellation of the peaked
short-range contribution between the rectangle and triangle diagrams. However, while the signal
from the ground state wave function is cancelled, the statistical noise remainsand grows ase∆E(t−t0)

with ∆E the energy difference between the two lowest eigenstates.

An approximate potential is obtained by inverting the Schrödinger equation (2.3) with the BS
wave functions computed on the lattice as input. The wave functions in Fig. 4 unfortunately do
not allow such a computation. The ground state wave function (left) is sharply peaked around the
origin, leading to huge discretization errors when taking finite-differenceLaplacian operator. The
first excited state wave function (right) is extremely noisy due to large energy separation between
the two lowest eigenstates and the noise is further enhanced by taking the Laplacian.

Using the fact that the main contribution to the first excited state wave function isfrom the
parallel diagram and that the other diagrams should only contribute to the short-range part of the
potential, we show in Fig. 5 the effective central potential computed using only the parallel dia-
grams, on both sets of hopping parameters. We see that a simple Yukawa fit isin good agreement
to the data even at surprisingly short range. The masses in the Yukawa fitare 1.53(9) GeV and
0.94(17) GeV, with corresponding rho masses of 1.37 GeV and 1.10 GeV, respectively.

6. Summary and outlook

We have shown preliminary results of the application of the potential method to theI=1 pion-
pion system. The method, which has been successful in the study of baryon-baryon systems,
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Figure 5: Central potential using only parallel diagrams.t − t0 = 12. Fit by a Yukawa potential.

encountered difficulties in this particular setup. First, the ground state beingthe rho meson, the
wave function is very short-ranged and the computation of the potential leads to large discretization
errors. Then, while the first excited state is a scattering state and likely to be well described by a
potential, it is difficult to extract due to the large energy difference.

However, approaching the problem from a different perspective, the present results shed a new
light on the qualitative understanding of the system. Furthermore, the aboveproblems may be
solved in the region where the rho meson is a resonance and not the ground state, since the scat-
tering state will be simply extracted by saturation and the short-ranged component should become
less important. In this case, the potential method could lead to competitive quantitative results.
Further study at smaller pion masses will confirm or invalidate this expectation.

Numerical computations in this work were carried out on SR16000 at YITP inKyoto Uni-
versity. We are also grateful for the authors and maintainers of CPS++ [11], of which a modified
version is used for measurement done in this work.
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