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1. Introduction

One of the goals of our collaboration has been to compute, from first principles lattice QCD
simulations, the low-lying hadron spectrum in various symmetry channels in hopes to aid our un-
derstanding of QCD through comparisons with low energy effective theories. The reliable extrac-
tion of the energies of the excited states in each symmetry channel requires that we use interpolating
operators which couple well with the ground states in the channel and also reasonably well with the
excited states up to the energy scale that one is interested in. The progress made in the last couple
of years for single-particle and some two-particle operators/correlation functions have appeared in
various papers and proceedings ([1]-[7]).

The extraction of excited energy levels on dynamical configurations must confront the problem
of mixing of single-particle states with multi-particle states and requires new techniques to be
developed given the finite resources available. The construction of a set of good interpolating
operators which have good signal-to-noise ratio is crucial in computing the excited states through
the variational method as the signal for the heavier excited states decay rapidly into the noise,
destabilizing the diagonalization procedure. In this contribution, we report on our progress towards
solving these issues.

2. Lattices

The dynamical lattices that we use are the clover-improved, anisotropic lattices ([8]) that have
been generated by the HadSpec collaboration [9]. The anisotropy not only allows one to extract
energies at early timeslices (as long as the interpolating operators are effective) before the signal-
to-noise ratio deteriorates but also generally has smaller fluctuations. There has only been a single
lattice spacing generated so far corresponding to r0/as = 3.221(25). The anisotropy was tuned to
3.5 with a measured valued of 3.3 using the pion dispersion relation. The quark mass used in this
study corresponds to pion masses of 240 MeV (250 configurations).

3. Interpolating Operators

The interpolating operators that are used to form the correlation matrix for digaonalization is
constructed so that they transform irreducibly under the lattice symmetry group of rotations and
translations and have the appropriate flavor structure and G-parity. Operators for hadrons at rest
can be constructed from a handful of conventional quark propagators as long as the displacement
types are restricted to the simple displacements. The interpolating operators that we will be using
are based on the irreducible representations of the appropriate cubic point groups and the pruning
of these types of operators have been studied in detail in previous studies. The choice of the
elemental operators to use were based on its simplicity and diversity while maintaining the best
overlap and low noise-levels in the single particle correlation functions. A preliminary study of the
isovector meson spectrum was presented last year at the lattice conference for the heavier quark
mass corresponding to mπ = 390 MeV.

The same approach is taken in designing/pruning the interpolating operators for hadrons with
non-zero momenta, k (in units of 2π/L). In this study, we consider those states which have mo-
menta of the form, k = (0,0,n), k = (0,n,n) and k = (n,n,n). The group theory for these choices
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of momenta was discussed in the conference report from last year [1] and the general discussion of
the group theory is given in [10].

3.1 Quark Propagators

In order to incorporate hadron operators with non-zero momentum and explicit two-particle
operators in our operator set, we construct the hadron interpolating operators from stochastic LapH
quark propagators ([11]). The stochastic LapH algorithm is an efficient all-to-all extension of the
distillation algorithm ([12]) which does not suffer from poor volume scaling behaviour. The method
allows one to inject any momentum into the interpolating operators after the propagators have been
generated, the construction of extended operators and it also separates the source operator from
the sink operator which greatly simplifies the construction of large correlation matrices needed to
extract the excited state spectrum.

3.1.1 Stochastic LapH Quark Propagators

In this section, we briefly review the stochastic LapH algorithm. The source vector (for quark
label A) is given by

ρ
(A)[d]
bβkp̄ (x, t) =

(
D̃(p̄)

k VSP[d]
ρ
(A) (x, t)

)
bβ

where b is the color index, β is the spin index, D̃(p̄)
k is the covariant derivative in the k direction with

separation p̄, VS is the matrix of eigenvectors of the Laplacian and P[d] is the projection operator
for the dilution scheme being applied. The dilution schemes can be categorized into four different
types:

P[d]
i j = δi j, d = 0, (no dilution)

P[d]
i j = δi j δdi, d = 0, . . . ,N−1 (full dilution)

P[d]
i j = δi j δd,bKi/Nc d = 0, . . . ,K−1, (block-K)

P[d]
i j = δi j δd, i mod K d = 0, . . . ,K−1, (interlace-K)

where N is the dimension of the space of dilution type and N/K is an integer.
The solution vector, ϕ

(A)[d]
aα jp , is then computed by inverting Ω = γ4M with this source. The

solution vector is then smeared with the smearing operator and displaced appropriately,

ϕ
(A)[d]
aα jp (x, t) =

(
D(p)

j VSV†
SΩ
−1
)

aα;bβ

ρ
(A)[d]
bβkp̄

where Ω = γ4M and M is the Dirac operator. The quark propagator (for line A) is then given by

Nd

∑
d

ϕ
(A)[d]
aα j (x, t)ρ(A)[d]†

bβk (x0, t0).

3.2 Meson Correlation Functions

Meson correlation functions are formed by correlating meson operators given by

M
[d1d2]
l (ρ1,ϕ2;p, t) = c(l)

αβ ∑
x

e−ip·(x+(dα+dβ ))ρ
[d1]
aα (x, t;ρ1)

∗
ϕ
[d2]
aβ

(x, t;ρ2)
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Figure 1: Preliminary results for the glueball corre-
lation function on the 243 lattice at 240 MeV pion
mass.
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Figure 2: Preliminary results for the correlation
function of the glueball and π-π mixing term for the
240 MeV configurations.

where dα are introduced to maintain G-parity when needed. The general form of the meson corre-
lator takes the form (many of the indices have been suppressed in this expression for brevity),

Cll̄(p, t f − t0) =
〈
−δAĀδBB̄M

[d1d2]
l (ϕ̄1,ϕ2;p, t f )M

[d1d2]
l (ρ̄1,ρ2;p, t0)∗ (3.1)

+δABδĀB̄M
[d1d1]

l̄ (ρ1,ϕ1;p, t f )M
[d2d2]

l̄ (ϕ2,ρ2;p, t0)∗
〉

where the second term appears for isoscalar mesons.

4. Preliminary Results

In this section, we present a few selected preliminary results for particles in different isospin
sectors.

4.1 I = 0

The isoscalar channel is one of the most challenging channels as there are disconnected
(“same-time”) diagrams and “box” diagrams appearing in the correlation function. The com-
pletely disconnected diagrams generally suffer from large gauge noise and hence is an ideal case
for stochastic estimation over ‘non-stochastic’ evaluations such as the distillation algorithm. The
“box diagrams” are just as difficult to evaluate but are perhaps not as noisy. The stochastic LapH
algorithm allows the computation of all of these diagrams which are involved in this channel from
four independent noise sources. Two noise sources are needed just to construct a single pion opera-
tor and so at the expense of computing two more noise vectors, we can evaluate all of the diagrams
needed for the isoscalar channel. The scalar glueball operator comes for free as well because one
can construct it from the eigenvalues of the LapH operator. A glueball correlation function using
these LapH operators is shown in Fig. 2 on the 243× 256 lattice with the 240 MeV pion mass.
We have studied the mixings between the scalar meson and the scalar glueball as well as scalar

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
2
5
9

Appl. of stochastic LapH C. H. Wong

0 10 20 30 40
t/at

−500

0

500

1000

C
(t

)

ππ−f0 (Total)
ππ−f0 (Smt)
ππ−f0 (Box)

Figure 3: Preliminary results for the various contri-
butions to the ππ− f0 mixing term.
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Figure 4: The effective mass of the kaon with mo-
mentum (1,1,1) in lattice units.

mesons with the I = 0 ππ scattering state. The off-diagonal correlation functions for these differ-
ent interpolating operators for the I = 0 channel on the 243 lattices are shown in Fig. 2 and Fig. 3.

4.2 I = 1/2

There are no disconnected diagrams nor any box diagrams to be evaluated for the lowest lying
states in the I = 1/2 channel below the multi-particle threshold. The gain from the stochastic
LapH algorithm compared to point propagators is that different momenta values for the kaons can
be simulated by introducing simple exponential factors into the zero momentum operators at the
source as well as the sink (without computing the quark propagator from each point on the lattice).
However, there will be an extra noise source/solution pair needed at the strange quark mass. Our
preliminary results suggest that the introduction of the stochastic noise solely in the LapH subspace
does not make the determination of energies with finite momentum any harder than zero momentum
states with similar energies. We show an example for the kaon with momentum (1,1,1) in lattice
units in Fig. 4.

4.3 I = 1

The rho decay width has attracted attention in recent years as several groups have performed
large scale simulations at light quark masses ([13]-[15]). The lattice sizes and the quark masses
we have are limited as larger lattices with lighter masses are still being generated now. We have
generated many of the operators with finite momenta that will be needed for the analysis of this
channel. We show one of the representative effective masses in this channel in Fig. 5.

4.4 I = 2

The isospin-2 channel is an exotic channel and does not require any disconnected diagrams
to be evaluated. The correlation function can be evaluated by computing the product of two pion
propagators and the corresponding quark-exchanged diagrams. Since the finite momentum single
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Figure 5: The effective mass of the ρ with momen-
tum (0,1,1).
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Figure 6: A tmin plot of the energies extracted in the
I = 2 channel.

pion operators have already been computed, we can use many different ππ operators to reduce
the contamination from excited states. The use of many operators for this state is important in
a large volume because the level spacings decrease with increasing volume. We construct a cor-
relation matrix which is then diagonalized to find the optimized correlation function. We fit the
optimal correlator for various tmin values to check for stability in the fits. A “tmin plot” is shown in
Fig. 6 after diagonalization. The scattering length that is extracted from the fits are consistent with
continuum two-loop chiral perturbation theory predictions [16], but the value is sensitive to the
choice of the optimization timeslice. We are examining the systematic errors of choosing different
diagonalization times and also the sensitivity to tmax included in the fits.

5. Summary

The stochastic LapH quark smearing algorithm has been tested for single particle meson states
with various momenta and isoscalar channels including the mixing of the π-π state with the scalar
glueball and the scalar meson state. The elastic scattering length was estimated using Lüscher’s
formula and found to be consistent with large errors with continuum chiral perturbation theory.
The I = 2 exotic state was computed using various finite momenta pion operators and a result
consistent with chiral perturbation theory was obtained. The systematic errors due to the different
diagonalization procedure has not been fully understood yet and is a subject of current investigation.
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