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ing (AMA) is one of the powerful tool to more effectively reduce the statistical noise of various
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in the same ensembles we see AMA has much advantage of performance for these observables.
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1. Introduction

In order to precisely evaluate non-perturbative quantities in lattice calculation, the reduction
in noise-to-signal ratio is one of the most important task especially for nucleon electric dipole
moment [1, 2], the hadronic contribution to muon anomalous magnetic moment [3], nucleon form
factors and structure functions [4],η ′ meson mass and mixing angle [5] and so on. We consider
the new strategy to effectively increase statistics without generating the new gauge configurations
using covariance in lattice symmetry.

Traditionally translational symmetry on the lattice has been used as the covariant symmetry
of correlation function (correlator) with hadron interpolating operator. Since correlator in different
source positions with the same distance between each local operators is exactly invariant in the
infinite statistical limit, the average of several source positions can be regarded as several times
statistics if there is no correlation between them. In this case, however, the additional computation
of conjugate gradient (CG) to obtain quark propagator at each source positions is needed. Consid-
ering the reduction of the above computational cost, low-mode-averaging (LMA) has an advantage
for low-(eigen)mode dominant observables as pseudoscalarpropagator [6, 7, 8, 9, 10, 11]. In order
to apply LMA to some kinds of correlator, another computational cost to obtain many low-modes
to reach the dominance in each observables may be required. Thus if theall mode contribution
should be taken into account, LMA might less work than traditional source-shift method. In fact
[13, 12, 14] reported that the statistical error reduction of nucleon propagator (or heavy mesons) in
LMA is less significant than pseudoscalar correlator.

Here we suggest the new class of variance reduction techniques for nucleon correlator and
composite correlator [15]. Our idea is that it is not only able to cover low-mode contribution as
well as LMA but alsoall modes which include the excluded modes from LMA (high-mode)are
taken into account without statistical bias. All-mode averaging (AMA) will be one of the powerful
technique to precisely evaluate the observables includinghighly composite contribution coming
from low-mode and high-mode. In this proceedings we explainthis idea and show some numerical
results of two-point and three-point correlator in realistic lattice setup.

2. Covariant approximation averaging

The observableO obtained in lattice calculation used in gauge ensemble{U1,U2, · · · ,UNconf}

is represented as the statistical average;

〈O〉 =
1

Nconf

Nconf

∑
i=1

O[Ui]+ O(N−1/2
conf ), (2.1)

where the second term denotes the uncertainty due to finite number of available gauge configura-
tions in actual simulation. Under the transformation ofg ∈ G, whereG is symbolically defined as
a group of transformation in lattice symmetry and the element g denotes one of the manipulation
in G for the link variable,U →Ug, the observable should be invariant

〈O〉 = 〈Og〉, (2.2)

in the infinite statisticsNconf → ∞.
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Here we introduce the approximationO(appx) which fulfills the following condition:
Appx-1:

r =
〈∆O∆O

(appx)〉
√

〈(∆O)2〉〈(∆O(appx))2〉
≃ 1, 〈(∆O)2〉 ≃ 〈(∆O

(appx))2〉, (2.3)

with ∆X = X −〈X〉. r is regarded as correlation betweenO andO
(appx).

Appx-2: The computational cost ofO(appx) is much smaller than originalO.
Appx-3: 〈O(appx)〉 = 〈O(appx)g〉.
UsingO

(appx) we construct improved estimator;

O
(imp) = O

(rest) +O
(appx)
G , O

(rest) = O −O
(appx), O

(appx)
G = N−1

G ∑
g∈G

O
(appx)g, (2.4)

which is also satisfied with〈O(imp)〉 = 〈O〉 (Appx-3). For the above estimator the first and the
second conditions are to reduce the computational cost at fixedNconf, and the third one is to avoid
the statistical bias. When we performNG times measurement ofO(appx) after transformationg, for
instance, by shifting source locations, the statistical error of improved estimator,∆(imp), will be
reduced to

∆(imp) ≃ ∆
√

2(1− r)+ N−1
G , (2.5)

compared with original error∆ ignoring the correlation between differentO
(appx)g. In the case

of r ≃ 1 (Appx-1), ∆(imp) becomes nearlyN−1/2
G times smaller than∆. Since the computational

cost Cost(O(appx)
G ) is cheaper thanNG×Cost(O) from Appx-2, total cost ofO(imp) is significantly

reduced. The above estimator is defined ascovariant approximation averaging (CAA).
LMA is one of the class of CAA;O(appx) consists of low-mode, andg is a shift of source

location under translational symmetry. In LMAO(appx) is correlator constructed by the inverse of
Hermitian Dirac operatorS(x,y) = H−1(x,y) ( or the even-odd preconditioned counterpart), where
we only present formula for the point source case for simplicity,

S(low)(x,y) =
Nλ

∑
k=1

λ−1
k ψk(x)ψ†

k (y), O
(LMA )
G =

1
NG

∑
g∈G

O(S(low)g), (2.6)

with eigenmodeψk and eigenvalueλk in H(x,y)ψk(y) = λkψk(x). Appx-3 is by definition and
Appx-2 is fulfilled when ignoring the I/O time of stored eigenmode indisk storage or memory
and time of vector-multiplication to constructO(S(low)). Both conditions are (mostly) independent
from observables, however the validity ofAppx-1 depends on magnitude ofNλ (from the practical
point of viewNλ usually needsO(100)).

We propose the new class of CAA asAll-mode averaging (AMA) [15]. Using the sloppy CG
combined with low-mode deflation [10] in which the stopping conditionε of CG is made loose as
εAMA < 10−3–10−4 (or restrict a few CG iteration number)1, the approximation is given by

S(all)(x,y) =
Nλ

∑
k=1

λ−1
k ψk(x)ψ†

k (y)+ fε(H(x,y))θ(λ −λNλ ), O
(AMA )
G =

1
NG

∑
g∈G

O(S(all)g), (2.7)

1With the fixed the stopping condition of CG in the specification of the approximation,S(all). There could be a
small, but finite, probability that a bias will be introduceddue to the finite precision (64 bits arithmetic in our case)
breaking Appx-3. This bias could be avoided by fixing the iteration number to a constant as pointed out by M.Lüscher
and S. Hashimoto independently. In this proceeding,O(100) configurations were checked that this bias is negligible
whenεAMA = 3 10|3.
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Table 1: Parameters in LMA/AMA. We represent the maximum and minimumrange of CG iteration in each
ensembles.

m Nconf NG Nλ ε CG iter. εAMA CG iter.(AMA)

0.005 380 32 400 10−8 350–360 3×10−3 70–90
0.01 257 32 180 10−8 600–630 3×10−3 90–130

where fε denotes the polynomial function ofH created by sequence of CG process. AMA has
advantage thatS(all)(x,y) takes account of not only low-mode contribution but also (approximately)
all-mode contribution which is controlled by the two parametersNλ andεAMA . AMA also fulfills
the above three conditions (Appx-1–Appx-3) for a much wider class of observables than LMA.

3. Numerical results

We use theN f = 2+1 domain-wall fermion (DWF) configurations generated by RBC/UKQCD
collaboration in 243×64 lattice atβ = 2.13 Iwasaki gauge action [16]. In this configurations 5th
dimension size isLs = 16. We curry out CG algorithm with even-odd preconditioningat quark
massm = 0.01,0.005. In the calculation of the exact eigenmode of Hermitian even-odd kernel
of DWF operator we implement the implicitly restarted Lanczos algorithm with Chebychev poly-
nomial acceleration [17]. Note that in use of even-odd baseswe should take care of shift size of
source point to avoid the unexpected bias into LMA/AMA estimator. Since there might not be
(trivial) equivalence between even and odd DWF kernel, it issafer to use even (or odd) step of
source shift manipulationg in Eq.(2.6) and (2.7) for even (or odd) DWF kernel.

In this proceedings LMA/AMA estimator is obtained inNG = 32 different source locations
separated by every 12 for spatial direction and 16 for temporal direction; (0,0,0,0), (12,0,0,0),
(12,12,0,0),· · ·,(12,12,12,48) in the lattice unit. (0,0,0,0) is an original source location. Stop-
ping conditionε for original observableO and sloppy CGεAMA for AMA are defined as||Hx−
b||/||b|| < ε ,εAMA with even-site source vectorb and even-site solution vectorx. Table 1 repre-
sents the each parameters. Note that the number of CG iteration is in the case of deflated CG with
Nλ low-mode projection. To compare the performance, we set theGaussian-type smearing source
parameter quoted in [4]. Reference [4] has made use of traditional method in which statistics is
increased by taking average overO at 4 different source locations to precisely evaluate the nucleon
isovector form factor (and axial-vector form factor, however we do not estimate that), and thus four
times ofNconf are regarded as their total statistics (In addition [4] has shown the results atm = 0.005
with double source method which increases further two timesstatistics if ignoring the correlation
from other source points in temporal direction. Furthermore source used in [4] is non-relativistic
one and thus its computational cost reduces to the half.).

3.1 Two-point function

In Figure 1 we compare the three different time-slices for nucleon (N), pseudoscalar (P) and
vector (V ) meson correlator between original and LMA/AMA analysis. As mentioned before LMA
takes account of statistical fluctuation of lowmode distribution of Dirac matrix in Eq.(2.6), and thus
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Figure 1: The comparison between LMA/AMA and original analysis for nucleon (N), pseudoscalar (P)
and vector (V) meson propagator at different time-slicest = 4,8,12. The colored bar indicates the ratio of
relative error between original and LMA/AMA. This is the case atm = 0.005.

Table 2: The nucleon mass obtained by global fitting of N correlator with Gaussian smeared sink. We use
GeV unit. Computational costs of LMA/AMA and previous study[4] are estimated in the unit of original
computation of CG iteration (Org) with deflation. Note that for Cost(TY) we naively scale assuming that we
carry out the same implementation as [4] with deflation in 3728(1424) measurement inm = 0.005(0.01).
Bracket in Cost(TY) is an estimate with double source method. Last column is a gain for AMA which is
ratio of scaled Cost(TY) to achive AMA accuracy with Cost(AMA).

mπ mN(Orig) mN(LMA) mN(AMA) Cost(AMA) mN(TY) Cost(TY) Gain

0.33 1.1242(223) 1.1451(87) 1.1390(38) 8.2 1.1481(100) 9.8[4.9] 8.3
0.42 1.2207(171) 1.2192(111) 1.2334(42) 6.7 1.2169(93) 5.5 4.0

it turns out that the error reduction of LMA may be significantfor long distance. On the other hand,
since AMA approximately includes the all mode contributionby using the sloppy CG, AMA will
work well for both short and long distance effects. The abovestatement is clearly seen in Figure
1; From t = 4 to t = 12, the (relative) error reduction is drastically changed in LMA, however
for AMA such reduction keeps close to ideal reduction rate, 1/N1/2

G ≃ 0.18, for every channels.
Note thatP channel seems to show a similar error reduction between LMA and AMA because this
channel mostly dominates the lowmode contribution as expected in [6, 7, 8].

In Figure 2 we observe that the effective mass of nucleon in AMA becomes more stable for
both point and Gaussian smeared sink rather than LMA. In Table 2 we see that the precision of
nucleon mass in AMA is higher than previous study [4] while the computational cost is roughly less
by 1/4 times. The detailed comparison between them including computational time of lowmode is
discussed in [15].
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Figure 2: Effective mass plot of nucleon correlator in original, LMA/AMA analysis with point sink and
Gaussian smeared sink. The colored bound shows the statistical error when globally fitting the propagator.

3.2 Nucleon isovector form factor

In order to check LMA/AMA in more complicated observables, we try to compare the three-
point function in AMA and traditional method. Nucleon isovector form factor is appropriate to
investigate the working of AMA because such signal is very clear and it is given by a complicated
ratio of quark propagator;

Rµ(t1, t, t0|p1, p0) = K
CN

Jµ
(~q, t)

CN
G(t1− t0,0)

[

CN
L (t1− t,~q)CN

G(t − t0,0)CN
L (t1− t0,0)

CN
L (t1− t,0)CN

G(t − t0,~q)CN
L (t1− t0,~q)

]1/2

(3.1)

with two-point function of nucleon of local (L) or Gaussian (G) sink, CN
L,G(t,~q) at three dimen-

sional momentum~q, three-point functionCN
Jµ

(~q, t) with currentJµ , andK =
√

2(EN + mN)/EN .
Following [4] we evaluate the isovector form factor extracted from Eq.(3.1) as shown in Figure
3. Precision ofF1,2(q2) in AMA are more accurate than the previous results [4] at eachtransfer
momentaq2. This consistency indicates that AMA will be effective in reducing errors for many
lattice observables on the lattice.

4. Summary

In this proceedings we show several results of the new class of error reduction techniques in
covariant approximation averaging (CAA). We suggest all-mode-averaging (AMA) in which all
mode contribution is taken into account by using sloppy CG with deflation as the improved estima-
tor instead of lowmode in low-mode averaging (LMA). AMA is applicable to broad observables
including nucleon spectrum, three-point function and other composite correlator rather than LMA.
We compare the nucleon mass and isovector form factor with realistic lattice size (2.5 fm3) and
light quark mass (mπ ≃ 0.3–0.4 GeV) inN f = 2+1 DWF configurations, and show the significant
reduction of computational cost to obtain similar precision with traditional one. Calculations of the
nucleon electric dipole moment and the hadronic contribution to the muon g-2 are underway.

Numerical calculations were performed using the RICC at RIKEN and the Ds cluster at FNAL.
This work was supported by the Japanese Ministry of Education Grant-in-Aid, Nos. 22540301
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Figure 3: Isovector form factorF1(q2) andF2(q2) obtained in LMA/AMA and presented in TY et al.[4] at
m = 0.005.
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