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1. Introduction

It is of prime interest to understand QCD at finite temperature and density. Lattice QCD simu-
lations with non-zero quark chemical potentials suffer from a sign problem, where the determinant
of a quark matrix becomes complex and Monte Carlo simulations become unavailable. This makes
it challenge to study QCD at finite densities. Several approaches have been studied to overcome
or to circumvent the sign problem: multi-parameter reweighting, canonical approaches, imaginary
chemical potentials, and so on.

If the chemical potential is pure imaginary, the quark determinant is real. There is no sign
problem in this case, and standard Monte Carlo algorithms can be applied. QCD with imaginary
chemical potential was studied in Refs. [1, 2, 3] with staggered (KS) fermions, and in [4] with
standard Wilson fermions and in [16] with improved Wilson fermions.

We study QCD at low temperatures and nonzero quark chemical potentials using the imagi-
nary chemical potential approach. We report preliminary results about analytic continuation of the
Polyakov loop at T/Tpc = 0.5∼ 1.

2. Imaginary Chemical Potential Approach

The study of the phase structure in (β ,µI)-plane provides us with the information of the phase
structure in (β ,µR)-plane through analytic continuation. The Roberge-Weiss periodicity is impor-
tant in the study of QCD with imaginary chemical potential [5]. Roberge and Weiss showed the
existence of a phase transition at high temperatures, where the phase of the Polyakov loop is an
order parameter, while this phase transition does not occur at low temperatures.
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Figure 1: Schematic figures for the N f = 2 QCD phase diagram in the (µ2,T ) plane (left) and (µI/T,T )
plane (right). The figures are taken from [16].

QCD with imaginary chemical potential is free from the sign problem. Using a relation

(det∆(µ))∗ = det∆(−µ), (µ = µR + iµI), (2.1)

it is straightforward to prove that det∆(µ) is real for µ = iµI . A partition function and its free-
energy are analytic within one phase even if chemical potential is extended to complex. The an-
alyticity holds until the occurrence of a phase transition. This validates the imaginary chemical
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potential approach for the study of the QCD phase diagram. In addition, the QCD phase diagram
has a unique feature in the imaginary chemical potential region, called the Roberge-Weiss period-
icity [5], see Fig. 1. In the presence of the quark, the Z(3) symmetry is explicitly broken. However,
if chemical potential is pure imaginary, the Z(3) symmetry is maintained via a translation of µI as

Z
(

T,
µI

T

)
= Z

(
T,

µI

T
+

2π

Nc
k
)
, (2.2)

where k is an integer.

3. Framework

3.1 Formulation and parameter set up

We employ the renormalization-group improved gauge action [9] given by

Sg =
β

6
[
c0 ∑(1×1 loop)+ c1 ∑(1×2 loop)

]
, (3.1)

with c1 =−0.331 and c0 = 1−8c1 and the clover-improved Wilson fermion given by

∆(x,y) = δx,x′ − κ

3

∑
i=1

[
(1− γi)Ui(x)δx′,x+î +(1+ γi)U

†
i (x
′)δx′,x−î

]
− κ

[
e+µ(1− γ4)U4(x)δx′,x+4̂ + e−µ(1+ γ4)U

†
4 (x
′)δx′,x−4̂

]
− κCSW δx,x′ ∑

µ≤ν

σµνFµν . (3.2)

We determine CSW using a result obtained from an one-loop perturbation theory [10]: CSW = (1−
0.8412β−1)−3/4. Here µ is the quark chemical potential in lattice unit.

We calculate the Polyakov loop 〈L〉= |L|exp(iφ) for various chemical potentials, and determine
the chemical potential dependence of |L|. We will explain this point in the next subsection.

In order to study the low temperature region, we carried out lattice simulations for three set of
lattice sizes: N3

s ×Nt = (83× 4), (83× 6), and (83× 8). We used a fixed value of β = 1.86, and
three cases correspond to T/Tc = 1,2/3 and 1/2 for Nt = 4,6, and 8, respectively. The value of the
hopping parameter was fixed with κ = 0.139838, which was determined by the lines of constant
physics with mPS/mV = 0.8 at µ = 0 [11, 12].

We used a step size of the molecular dynamics of δτ = 0.02, the number of the molecular dynam-
ics of 50, which gives the length of one trajectory of one. As we will discuss below, the Polyakov
loop is quite insensitive to quark chemical potential at low temperetures. Hence, high statistics
simulations are required to study the low temperature region. We generated 95,000, 100,000 and
70,000 trajectories for 83×4, 83×6 and 83×8, respectively. For all the ensemble, the first 20,000
trajectories were removed as thermalization. The Polyakov loop was measured for each trajectory.

3.2 Fitting Function

Now we consider a function describing the chemical potential dependence of the Polyakov loop.
First, we consider a canonical formalism, where the partition function Z(µ) is a function of ξ =

3
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exp(−µ/T ). With Z(µ) = Z(−µ) implying a symmetry under ξ ↔ 1/ξ , Z(ξ ) is described by

Z(ξ ) = ∑
m

C(3m)e−3mα(ξ 3m +ξ
−3m). (3.3)

Then, an observable O is given by

〈O〉(ξ ) = ∑mC
′
(3m)e−3mα(ξ 3m +ξ−3m)

∑mC(3m)e−3mα(ξ 3m +ξ−3m)
, (3.4)

α , C and C′ are parameters. We consider the sum up to m = 3.
The parameter α can be absorbed into C and C′. However, in the case, the determination of C

and C′ may suffer from numerical errrors, because they rapidly decrease with m. The parameter α

is introduced to keep C and C′ measurable. To estimate α , we consider a canonical approach,

Z(T,µ) =
N

∑
n=−N

Zn(T )ξ n, (3.5)

where Zn(T ) is a canonical partition function with a fixed quark number n. N is the maximum
number of the quark. Z(T,µ) is the grand canonical partition function given by

Z(T,µ) =
∫

DU [det∆(µ)]N f e−SG . (3.6)

Using a reduction formula [14], det∆(µ) is expanded in terms of fugacity

det∆(µ) =C0

Nred/2

∑
n=−Nred/2

cnξ
n, (3.7)

where Nred = 4NcN3
s . Using the Glasgow method in µ , the canonical partition function is given by

Zn ≡ ZC(n) =
〈 C2

0dn

(det∆(0))2

〉
0

(3.8)

Here dn are the fugacity coefficients of the two-flavor determinant. 〈.〉0 denotes an ensemble aver-
age for gauge configurations generated at µ = 0.

Figure 2: The canonical partition functions Zn for three temperatures. Data were obtained from lattice
simulations on 83×4 lattice. [15]

We have studied Zn in Ref. [15], which is shown in Fig. 1. We determine the parameter α

at Nt = 4 using the result for T = 0.93Tpc. We employ ZC(n) = Aexp(−a|n|), then we obtain
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A = 0.438633±0.0382, a = 0.845268±0.0145. Here n is the quark number. Physically relevant
terms are n∈ {n| mod (n,3) = 0}. For instance, if there are three quarks, then there is one baryon:
ZC(n = 3) = ZC(nB = 1) = Aexp(−3a). We estimate values of α at Nt = 6, and 8, following a
relation ZC(n)∼ exp(−Fn/T ) with the free energy Fn.

4. Results

Scatter plots of the Polyakov loop in the complex plane are shown Fig. 3. The magnitude of the
Polyakov loop decreases with temperature. The Polyakov loop depends on µI at Nt = 4, and it is
almost insensitive to µI at Nt = 6,8.

Figure 3: Scatter plots of the Polyakov loop. T/Tpc = 1.0, 0.75, and 0.5 from top to bottom, and µI/T = 0.0,
0.558 and 1.047 from left to right.

Figure 4 shows preliminary results of the chemical potential dependence of the Polyakov loop.
The left panels show the Polyakov loop as a function of µI/T ; here each panel containing the
data and fit function. The right panels show the Polyakov loop as a function of µ/T obtained
from analytic continuation of the fit function in the left panels. The signal-to-noise ratio was quite
small at low temperatures. Although we have generated more than 50 000 configurations, the
determination of the µ dependence of the Polyakov loop suffers from this problem. For instance,
the fit functions are away from some data points at the left panels, and a value of µR/T at which
the Polyakov loop is saturated decreases with increasing Nt . This is inconsistent with a naive
expectation of the µ dependence of the confinement/deconfinement phase boundary.
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Figure 4: Chemical potential dependence of the magnitude of the Polyakov loop. Left : imaginary chemical
potential, right : real chemical potential. T/Tpc = 1.0, 0.75, and 0.5 from top to bottom.

5. Summary

We have considered QCD with imaginary chemical potentials to obtain the chemical potential
dependence of the Polyakov loop at low temperatures. We employed N f = 2 flavors QCD with the
renormalization-group improved gauge action and the clover-improved Wilson quark action. We
performed simulations on 83×4, 83×6 and 83×8 lattice and calculated the Polyakov loop at low
temperatures. We considered a function of fugacity to fit the chemical potential dependence of the
Polyakov loop, and determined the parameters with the simulation data. The results were extended
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to real chemical potential through analytic continuation.
It turns out that the Polyakov loop is quite insensitive to chemical potentials at low temperatures

although some structures are seen. Although our simulations were done with high statistics of
more than 50 000 configurations, the determination of the chemical potential dependence of the
Polyakov loop suffers from significantly small signal-to-noise ratio.

In order to increase the precision of the results, we plan to consider several future works : us-
ing other observables such as quark number density, including smearing of the Polyakov loop,
increasing lattice volume etc.
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