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1. Introduction

Topology in lattice QCD has been widely studied for different purposes, while one of most ex-
citing application is to explore the structure of QCD vacuum, which has not been well understood.
The topological charge susceptibility χt , which is defined as

χt =
1
V

(⟨
Q2⟩−⟨Q⟩2

)
. (1.1)

where Q is the topological charge, and it has attracted special interest since 1979. The quenched
χt is related to the U (1) axial anomaly and mass of η ′ meson as the well-known Witten-Vaneziano
relation [1] [2]. On the other hand, lattice studies of QCD at finite temperature and the phase
structure of QCD has made great progress recently [3], and the relation between chiral symmetry
breaking and confinement, as they happen to be near Tc, are of great interest. χt describes the
topological fluctuations of the vacuum in quenched situation, and its behavior near Tc are expected
to provide a further understanding on the chiral symmetry breaking and confinement.

χt in SU(3) pure gauge theory near Tc was studied by Gattringer et al. in 2002 [4]. Their sim-
ulation find the cross-over behavior of χt in the temperature interval of 0.8Tc ∼ 1.3Tc. They use the
chiral improved fermion action and the fermionic method based on Atiyah-Singer index theorem
to calculate the topological charge. Here we work on the anisotropic lattices, with wider range of
temperature, using the bosonic method to explore the topological properties at finite temperature.
More recent studies were carried out [5], part of their results is compatible with us.

2. Methods

We executed the calculation on the anisotropic lattices, which have advantages of improving
accuracy in lattice QCD for both zero and finite temperatures. The Symanzik and tadpole im-
provement schemes of the gauge action are found to have better continuum extrapolation behaviors
for many physical quantities, that is, the finite lattice spacing effect is well suppressed by these
improvements. Considering these facts, we use the following improved gauge action,

SIA = β
{

5
3

Ωsp

ξ u4
s
+

4
3

ξ Ωt p

u2
t u2

s
− 1

12
Ωsr

ξ u6
s
− 1

12
ξ Ωstr

u4
s u2

t

}
(2.1)

where β is related to the bare QCD coupling constant g0, ξ = as/at is the aspect ratio for anisotropy
(we take ξ = 5 in this work), us and ut are the tadpole improvement parameters of spatial and tem-
poral gauge links. ΩC = ∑C

1
3 ReTr(1−WC), with WC referring to the path ordered product of link

variables along a closed contour C on the lattice. Ωsp includes the sum over all spatial plaquettes
on the lattice, Ωtp includes the temporal plaquettes, Ωsr includes the product of link variables about
planar 2×1 spatial rectangular loops, and Ωstr refers to the short temporal rectangles (one tempo-
ral link, two spatial). Practically, ut is set to 1, and us is defined by the expectation value of the
spatial plaquette, us =

⟨1
3 TrPss′

⟩1/4
. Besides, it’s been proved in [6] that the renormalization of the

anisotropy ξ is ignorable as β varies.
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2.1 The definition of temperature

The temperature on lattice is defined as follow:

T =
1

Ntat
, (2.2)

where Nt is the temporal lattice size. T can be changed by varying either Nt or the coupling constant
β , which is related directly to the lattice spacing at . The critical temperature is determined for a
given lattice Nt = 24 after the critical coupling βc has been determined. The order parameter for
determining βc is chosen to be the susceptibility χP of the Polyakov line, which is defined as

χP =
⟨
Θ2⟩−⟨Θ⟩2 , (2.3)

where Θ is the Z (3) rotated Polyakov line. After a rough and refined study the peak position of
order parameter gives the critical coupling constant βc = 2.808, which corresponds to the critical
temperature Tc ≈ 0.724r−1

0 = 296MeV [6]. Here r0 is the hadronic scale parameter and we take
r−1

0 = 410(20)MeV.
Considering both finite volume effects and good resolution of temporal lattice at T ∼ 2Tc, we

set β = 3.2 in the study of topological susceptibility at finite temperature. The corresponding lattice
spacing as is set by calculating the static quark potential V (r) on an anisotropic lattice 243 ×128.
The fitting result of string tension σ reads:

as

r0
=

√
σa2

s

1.6+ ec
= 0.1825(7) , (2.4)

taking r−1
0 = 410(20)MeV, we have as = 0.0878(4) fm. Comparing to as at βc = 2.808 and Nt =

24, the Nt of Tc and 2Tc at fixed β = 3.2 can be calculated and the results are Nt ∼ 40 and Nt ∼ 20.
More parameters details could be found in [7].

In this study we change temperature by varying temporal lattice size Nt . Setting β = 3.2, we
generated a series of lattice 243×Nt with Nt =20, 24, 28, 32, 36, 40, 44, 48, 60, 80 and 128, which
cover the range of T ∈ [0.3Tc, 1.9Tc]. For each Nt lattice we sampled 1000 configurations, after
10000 sweeps from cold start and with 500 sweeps between each sampling. Each sweep consists
of a composite update including 1 pseudo heat-bath and 5 over-relaxing procedures. It should be
pointed out that we assume the difference between Tc (β = 2.808) and Tc (β = 3.2) is ignorable
due to the application of the improved gauge action.

2.2 Over-improved stout-link method

It is well-known that the topological charge Q calculated directly from a typical gauge con-
figuration by the field theoretic definition [8] will not be an integer in general, which is obviously
conflicting with the continuum situation. Thus, some cooling or smearing procedure is essentially
to be taken on the configuration before calculating Q, aiming to suppress the ultraviolet fluctua-
tions.

All cooling or smearing methods are based on an approximation to the continuum gauge field
action:

Sg =
1
2

∫
d4x tr

[
FµνFµν

]
. (2.5)
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and the lattice version of action contains combination of plaquette and larger Wilson loops. But
the coefficients of 2×2 and larger loop terms involved quite complicated renormalization problem,
while O

(
a4
)

errors are not suppressed as expected. Moreover, in these methods the destruction of
topological structure is unavoidable. For the purpose of the study on topology susceptibility, we
adopt the over-improved stout-link smearing method developed by Moran and Leinweber [9] to
filter the lattice, which is proved efficiently preserving instanton-like objects.

Over-improved stout-link smearing method introduces the over-improved parameter ε into
stout-link smearing algorithm. Modified link combinations are as follows:

Cµ (x) = ρsm ∑
{

5−2ε
3

(
1×1 paths touching Uµ (x)

)
−1− ε

12
(
1×2

+2×1 paths touching Uµ (x)
)}

, (2.6)

There are three free parameters in the over-improved stout-link smearing method, the over-
improved parameter ε , the smearing parameter ρsm, and nsm, the number of smoothing steps taken
on each configuration. Moran and Leinweber has practically determined ε = −0.25 to maximize
the life of instantons under iterative smearing procedure, so do we set this parameter. We checked
this on several configurations at different temperature and confirmed that mostly the topological
charge quickly fell into an integer number (near the integer within ±0.1) as nsm increased and kept
quite stable even after more then 1000 steps of smoothing procedure.
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Figure 1: Test for different ρ at Nt = 40

For the other two parameters ρsm and nsm, we take some test to find suitable values for them.
5 configurations were randomly selected for each Nt and were smoothed 200 times for ρsm =

0.01 ∼ 0.08, and the results of topological charge for some ρsm values are shown in Figure 1. ρsm

is the strength to suppress the fluctuation, but in practice we found that when ρsm is larger than
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0.08, it will leads to completely unstable topological charge, as shown in Figure 1. Finally we set
nsm = 40 and ρsm = 0.05 for all lattices (except for Nt = 128 we set ρsm = 0.07, keeping nsm = 40 ).
Moreover, the Fab

µν (x) used in computing the topological charge Q is calculated by highly improved
operators [10], including 1×1, 2×2 and 3×3 loops.

3. Results and discussion

We get 1000 Q charge data for each Nt lattice, which are calculated after 40 times of smoothing
procedures. Most of them are integers, as shown in Figure 2 that points biased from the integers
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Figure 2: Numbers of Q that bias from integer > 0.1
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Figure 3: Distribution of topological charge
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are less than 4%. Noting that for Nt = 128 we set ρsm = 0.07 to ensure that 40 steps of smooth are
practically enough.

Firstly, we display the histogram of the topological charge Q for different temperature in Figure
3. As the temperature increase, the Q has been suppressed as expected. We fit the distribution of Q
with Gaussian function, and the results are good, especially near Tc.

Next, susceptibility and its standard derivation could be worked out for each Nt , or say for
different temperature, the results are shown in Table 1 and Figure 4.

Nt T/MeV χ1/4/MeV

20 561.5 67.1±2.8
24 467.9 81.8±1.9
28 401.1 97.5±1.7
32 350.9 125.4±2.0
36 311.9 148.0±2.1
40 280.8 181.7±2.2
44 255.2 186.5±2.0
48 234.0 187.0±2.0
60 187.2 189.1±2.1
80 140.4 183.4±2.1

128 87.7 187.9±2.2

Table 1: χ results
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Figure 4: χ results

The susceptibility below Tc results as χt = 185.95MeV, which is consistent with former work.
It could be seen clearly that topological excitation is observed non-zero even at T = 1.9Tc. That
means instanton-like structure may exist above to 2 times of the “critical” temperature, supporting
the conclusion of Gattringer. As the Figure 4 shows, a smooth crossover behavior for χt decreasing
from (188(2)MeV)4 to (67(3)MeV)4 is found.

Another purpose of this work is checking the over-improved stout-link smearing method,
which is an effective and cheaper (than the fermionic method) method to reveal the cloaking na-
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ture of QCD vacuum while preserving topological structure as well as suppressing the ultraviolet
fluctuations on the lattice.
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