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1. Background

Mapmaking in the cosmic microwave background (CMB) context refers to the process of
reducing a set of instrumental observations of the microwave sky into maps or other sky represen-
tations. The sky representations are further processed to extract information about the structure
of anisotropies present in the microwave background. CMB mapmaking distinguishes itself from
other astrophysical imaging by having

• a wide field of view (from tens of square degrees to full sky)

• wide instrumental beam (from few to several tens of arc minutes)

• wide bandpass (order of 10 % of the center frequency)

• small number of detectors or pixels (from a few to a few thousand)

• scientific signal at best 10 % of the foreground anisotropy (kinematic dipole vs. primary
anisotropy) and only 1/100000 of the background (monopole vs. primary anisotropy)

• significant noise autocorrelations

Because of the above characteristics, mapmakers are very concerned about extracting the max-
imal information content out of the observations. Both beam and bandpass effects would require
their own treatments to be exhaustive so in this text we will focus on the optimal treatment of
correlated instrumental noise.

We recognize two main classes of instrumental noise correlations: low and high frequency.
The division is somewhat arbitrary but one can consider the sky signal to manifest in the detector
streams at a certain frequency band, say between 10 mHz and 10 Hz. Noise power below this band
is “low frequency” and noise above this frequency is “high frequency”. These numbers are just
orders of magnitudes and are affected by the scanning frequency and the width of the instrumental
beam. Low frequency noise correlations are driven by the electronic amplification of the signal and
usually fit well the 1/ f noise model:

P( f ) ∝

(
f
fk

)α

, (1.1)

where the noise power spectral density, P, is a function of frequency, knee frequency and slope
( f , fk and α respectively). Barring any harmonics from the electronics and cooling systems, the
instrumental noise spectrum at high frequency is close to flat (white). For most radiometer detectors
this means that the overall noise spectrum is well characterized by

P( f ) =
σ2

fs

[
1+
(

f
fk

)α]
, (1.2)

where σ is the white noise standard deviation and fs is the sampling frequency.
Some detector technologies introduce a lag in the detector response. In bolometers, incident

radiation heats up the target and depending of the amount of absorbed intensity, it takes a while for
the heat to dissipate. It is possible to measure and correct for such effects but it comes at a cost.
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Because of the bolometer response deconvolution, bolometer noise spectra can have high frequency
features that do not fit the simple 1/ f noise model. Examples of radiometer and bolometer noise
power spectral densities are given in Figure 1.Zacchei A., et al.: LFI data processing

Fig. 8. Noise spectra of radiometers LFI18M, LFI22S, LFI25S, and LFI28S) estimated by the noise pipeline (black lines).
All spectra are well-fit by Eq. 8 with a single knee frequency and slope (red lines). An excess near 1mHz is visible in
LFI25S and LFI28S. This is approximately the bed-switching frequency of the sorption cooler, and the different slopes in
LFI28S and LFI25S on the low-frequency side of the spectrum are possibly indications of thermal effects on the radiometer
output.

Fig. 9. Gap filling procedure applied to LFI28M for day 239. The upper panel shows the original TOI (black) where a
step is caused by a DAE gain change that produces saturated data. The (red) lines show the constrained noise realization
used to replace those data. The lower panel shows a zoom around the position of the step to highlight the consistency of
the gap filling data with the unflagged part of the TOI.
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Planck HFI Core Team: Planck early results. VI. HFI data processing: AA 536, A6 (2011)

when we crossed for the Galactic centre at 857 GHz for the first
time, see Sections 3.2 and 3.3).

Examples of cleaned TOIs produced are shown in Fig. 19.
The pipeline also produces TOI in which the ring average sig-
nal has been removed (see Fig. 20). This provides the basis for
estimating the noise as detailed in the next section.

5. Detector Noise estimation

In this section, we investigate the statistical properties of the de-
tector noise timelines from flight data, both on raw and clean
TOIs. Ground based measurement give only approximate indi-
cations of the noise characteristics as many features (e.g., long
term drifts, microphonic noise) depend on the satellite environ-
ment and the instrument settings in-flight. The di�culty in in-
terpreting flight data is to estimate the noise properties in the
presence of signal, which is the goal of the approach described
below.

It is shown in Appendix C that the joint maximum likelihood
estimate of the signal and the noise spectral parameters (taken
here as flat frequency bin powers) can be achieved by using the
redundancy of the scanning strategy. In the case of the Planck
scanning strategy, a flat weighting in the signal estimation on
rings is very close to optimal, so there is no need to iterate the
signal and noise power estimation.

The main di�culty in estimating the signal is to precisely
sample the signal in phase on rings. This is achieved by making
the assumption that the signal content is band-limited on the
rings, together with an approximate (but arbitrarily accurate)
irregular sampling method based on Fourier-Taylor expansions,
leading to so-called Fourier-Taylor rings (hereafter FTR, see
Appendix C.1.3). Note that this signal removal approach is
only possible when the estimation is done on a ring-by-ring
basis (map based signal estimation might replace it in the future).

The pipeline can thus be summarized as follows:

1. Estimate the signal content of each ring using the scanning
redundancy;

2. Subtract this estimate from the original data timeline to pro-
duce an estimate of the noise content;

3. Compute edge-corrected, averaged periodograms of the esti-
mated noise timeline;

4. Optionally adjust a parametric model of the noise spectrum
to the periodograms to determine the noise parameters.

Each step is described in further detail in Appendix C. Step
3 is repeated on all rings, though other zones can also be defined
and used for this purpose.

The last step is implemented as a maximum likelihood esti-
mate of the spectral parameters (e.g. Noise Equivalent Power or
NEP, knee frequency and spectral index of low-frequency noise),
where the distribution of the averaged periodogram estimate is
approximated as a product of �2 distributions with the appro-
priate number of degrees of freedom. The noise parameters are
determined from the spectra of all rings (or other zones), which
is useful in monitoring the evolution of these parameters with
time. The results discussed below were determined by fitting a
pure white noise model in the 0.6 – 2.5 Hz frequency range.

Figure 21 shows the noise power spectrum estimates for
three bolometers: 143-5, one of the most sensitive CMB-
dominated channels (top); 545-2, operating at a frequency where
the dust emission of the Galaxy and IR galaxies dominate the

Figure 21. Examples of noise power spectra for the bolometers
143-5 (top), 545-2 (middle), and Dark1 (bottom). The first two
have been calibrated in CMB temperature units, by using the
calibration coe�cients derived during the map making step. The
last spectrum is in Watts. The central region shows a nearly white
noise plateau, with a low frequency ‘1/f’ component, and a high
frequency cut-o↵ due to the filtering of frequencies above the
sampling frequency. At 143 GHz, the upturn due to the deconvo-
lution of the (bolometer dependent) temporal transfer function is
clearly seen (see details in Sect. 4.6).

signal (middle); and the Dark1 bolometer (bottom). Several fea-
tures are apparent in this figure. The spectrum is flat at inter-
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Figure 1: Example radiometer (left) and bolometer (right) noise spectra from [1] and [2] respectively.

2. Primer

The goal of mapmaking is to evaluate an estimator of the sky representation, m̃, from a vector
of observations, y. Typically, the sky representation, m, is taken to be a vector of pixel values
but pixelized maps are not a requirement. For full sky analysis of statistically isotropic CMB,
coefficients of the spherical harmonic expansion of the sky are often more useful than pixel values.

Relationship between the observations, y, and the sky is expressed as

y = Pm+n, (2.1)

where P is the pointing matrix. It maps the sky representation into individual detector samples.
The additional term, n, is a vector of instrumental noise.

There is a subtle interplay between the pointing matrix and the sky representation. Physically
each detector sample is a 4π convolution of the instrumental beam response over the sky and a
frequency band convolution of the detector bandpass and the frequency dependent sky. The beam
response causes an astrophysical object like the Crab nebula, M1, that has a beautiful, complex
structure in the Hubble Space Telescope images, appear as a deformed blob in CMB maps. This
poses no problem as the physical processes behind CMB fluctuations ensure absence of structure
at these scales.

The bandpass affects the apparent intensity of a source with non-flat spectrum. For example
the radio galaxy 3C 405 appears as one of the brightest compact sources on the sky through a
30GHz detector but is just detectable using an 857GHz detector. Even detectors that are designed
and built to have similar bandpass end up measuring a slightly different sky emission due to the
effective bandpass being slightly different.

Although it is possible to construct P to include both beam and bandpass, solving for the fidu-
cial sky would become intractable. It is customary to simplify the problem by assigning parts of
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the instrumental response into the sky representation. For example, modeling the beam response as
a δ -function in P yields a smoothed sky representation that is convolved with the effective instru-
mental beam. For most analysis this is entirely acceptable as long as the effect is well quantified.
The bandpass effects are equally disregarded in most mapmaking by only considering detectors
that have similar bandpasses.

In what follows we will take P to be a simple pixelized pointing matrix where the signal part
of a sample is just the corresponding pixel value. In case of polarized detectors, the signal is a
linear combination of the intensity and polarization pixel values.

Provided that the noise part, n, can be modeled as Gaussian (typically an excellent approxi-
mation), one can solve for a maximum likelihood estimator [6] for m:

m̃ =
(
PTN−1P

)−1 PTN−1y, (2.2)

where we have written N = 〈nnT〉 for the zero mean noise covariance matrix.
In practice, explicitly evaluating Eq. (2.2) is often impossible due to the large dimensions of P

and N. Instead, m̃ is gradually refined through conjugate gradient iteration until the residual in

PTN−1Pm̃ = PTN−1 y (2.3)

is reduced to acceptable level. The virtue of Eq. (2.3) is that the large matrices need not be evaluated
explicitly but it suffices to have them act on vectors. Furthermore, assuming noise to be piece-wise
stationary and the stationary intervals uncorrelated allows multiplications by N−1 to be carried
out in O(n logn) time by performing them in Fourier domain. The δ -function approximation to
pointing makes applications of P linear.

3. The Spectrum of Methods

The maximum likelihood equation, Eq. (2.2) defines a linear mapmaking operator,

M(P,N) =
(
PTN−1P

)−1 PTN−1 (3.1)

that transforms noisy observations into an estimate of the sky. Most approaches to mapmaking can
be viewed as variations of this operator. We have made this explicit by writing M to be a function
of the pointing matrix, P, and the noise model, N.

When noise is sufficiently white, it can be approximated by a diagonal covariance matrix,
N≈Nw. This greatly simplifies the evaluation of the maximum likelihood map, effectively remov-
ing the need to iterate the map estimate. An important variation of this simple binning is a case
where noise can be high-pass filtered to meet the approximation. Application of such filter will
have an impact on signal and it is important to characterize and propagate these effects, typically
through Monte Carlo simulations that are very efficient to perform when the mapmaking operator
has diagonal noise covariance.

When deviations from white noise spectrum occur only at low frequency, they translate into
a slowly varying noise offset in the time streams. If we model the slowly varying component as
a step function, we can solve for the step offset values (baselines) much like the pixels in our sky
representation. In this destriping approach [3], noise is still white, N≈ Nw, but we have modified
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the pointing matrix to include scanning of these offset values: Pm is replaced by Pm+Fa in the
signal model. The additional signal-like component, Fa is composed of the step amplitudes, a, and
a baseline pointing matrix, F, that scans the amplitudes into a full time domain vector. It is possible
to extend the maximum likelihood formalism by defining an extended pointing matrix, P∗ := [P,F]
leading to the same form as in Eq. (2.3) but it is more convenient to solve and remove the baseline
offsets from the observations and treat the rest of the problem as having just white noise.

Treating the baseline offsets like signal enables us to write the mapmaking equation without
any prior knowledge of the baseline distribution. However, if noise estimates are available, it is
possible to derive a prior baseline distribution in the form of a baseline-baseline covariance matrix:

Ca := 〈aaT〉. (3.2)

Now the general noise covariance matrix is not approximated as diagonal. Rather, we prune out
the degrees of freedom from the matrix that are not needed to describe the noise:

N≈ FCa FT +Nw. (3.3)

Again, it is possible to solve for the maximum likelihood map directly from Eq. (2.3) but it is often
simpler to solve for the baseline vector, a, subtract the baselines and use trivial binning to map the
signal and whitened noise. It has become customary to call destriping with prior noise information
generalized destriping [4].

The varying levels of approximations define a spectrum of mapmaking algorithms:

Binning Destriping Generalized destriping General Least Squares
Signal Pm Pm+Fa Pm Pm
Noise Nw Nw FCa FT +Nw N

Table 1: Mapmaking approximations

4. Signal Processing Analogy

Destriping, the process of fitting and subtracting baseline offsets, can be considered high pass
filtering of the data. When applied to frequencies without signal content (or to a noise only sim-
ulation) the analogy works very well. In this case, standard destriping is equivalent to subtracting
a running average from the data. In the Fourier domain this corresponds to convolving the signal
with a filter:

H( f ) =
[

1− sin2(π f tbase)

(π f tbase)2

]2

, (4.1)

where tbase is the step (baseline) length in seconds. When signal is present, the destriping formula-
tion attempts to apply the above filter only to the noise component of the data. The solution then
relies on the constant nature of the sky signal: the part of the observations that varies between
samples of the same pixel is noise. There are obvious problems associated with this differentia-
tion: some of the sky signals do change over time, even quite rapidly. The most most prominent
examples are distant quasars that can double in intensity over the course of just days. Depending
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on the pixel and beam size, samples assigned to the same pixels can also contain traces of signal
gradients. For best results, it is customary to exclude from the baseline solution regions of the sky
where above problems are likely to interfere.

Another aspect of the above filtering is that it does not differentiate between correlated noise
and white noise. If applied to instrument noise spectrum that is predominantly flat (white), the filter
still suppresses power below the baseline frequency,

fbase =
1

tbase
. (4.2)

Filtering white noise is somewhat of a subtle matter. While it obviously suppresses power in the
Fourier domain, it makes the noise have correlations. When the filtered noise is projected onto
a map the usual expectation of samples averaging to zero is inhibited. The details depend on
the scanning strategy and it is difficult to give general results beyond the correlation argument.
Nevertheless, destriping white noise is an example of a situation where the high pass filtering
analogy breaks down.

Generalized destriping applies a different kind of filter to the data. It explicitly differentiates
between white and correlated noise. Asymptotically (at the limit of short baselines and infinite
observations), the generalized filter is

H( f ) =
P2

w

[Pw +Pc( f )]2
, (4.3)

where it is assumed that the total noise spectrum is a sum of the white and correlated noise compo-
nents, P( f ) = Pw +Pc( f ). The effects of the destriping filters are depicted in Figure 2.E. Keihänen1 et al.: Making CMB temperature and polarization maps with Madam 11
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Fig. 14. Effect of baseline length on residual noise spectrum.
We subtract the solved baselines from the noise TOD (white
noise and 1/ f noise) and plot the spectrum of the residual. We
show results for 7 baseline lengths, from above: 1 h (black),
15 min (yellow, 4 min (purple), 1min (cyan), 15 s (red), 2.5 s
(green) and 0.625 s (blue). Solid and dashed lines show results
with and without noise prior, respectively. With 1 min baselines
and longer, the dashed and solid curves (noise prior on/off) are
on top of each other. The 0.625 s case with noise prior, which of
the studied cases gives the lowest residual noise variance in map
domain, is shown by a thick linetype. Also shown are the original
noise spectrum (black dashed) and the analytical approximation
given by Eq. (31) (black dash-dotted).

With the noise prior, results continue to improve at least until
baseline lengths of 0.1 s, which is the limit where we could bring
our computations. The noise prior has the effect of restricting
the baseline solution in such a way that the effective number of
unknows does not follow the number of baselines.

In order to study the importance of the high-frequencypart of
the noise spectrum, which is not well modelled by baselines, we
made a simulation where we removed the part of noise not mod-
elled by the baseline approximation. For each baseline length,
we replaced the 1/ f noise component by a sequence of baselines
of the same length as the baseline length used in destriping. The
results are shown in Fig 12, together with results obtained with
realistic noise. The difference between the two sets of curves is
the contribution of noise not modelled by baselines. We see that
this component becomes very important at long baselines.

In Fig 13 we show results obtained by applying the split-
mode. Data was divided into chunks which were first destriped
separately with a 0.625 s baseline. In the second phase we com-
bined the chunks, and re-destriped the data with 1-hour base-
lines. The rightmost points correspond to a case where the data
was destriped in 1-day chunks. The leftmost point corresponds
to the standard case, where the whole 488-day data set is de-
striped once. The CRN variance in split-mode is higher than in
the standard mode. This reflects the fact that the split-mode does
not exploit all information in the data. The benefit of the split-
mode is that it requires less memory than the standard mode, as
can be seen from Table 1.

7.2. Time domain

Next we consider the residual noise in the TOD domain.We sub-
tract the solved baselines from the combined white noise plus
1/ f noise TOD, and compute the spectrum of the residual. We
plot the spectrum for various baseline lengths in Fig. 14. We
show results both with and without noise prior. At long baselines
(1 min and above) results with and without noise prior cannot be
distinguished. When we move towards shorter baselines, differ-
ences appear. Without noise prior, residual noise power system-
atically decreases with decreasing baseline length. A peak struc-
ture appears at shortest baselines. When a noise prior is used,
the spectrum of residual noise converges towards the spectrum
shown by a thick line in the figure.

It is interesting to note that with a given baseline length, not
applying a noise prior gives lower residual noise power in TOD
domain. The situation becomes the opposite when the cleaned
TOD is binned into map: Using a noise prior leads to lower resid-
ual noise in map domain. This is related to the correlation prop-
erties of the destriped TOD. When a noise prior is applied, the
residual TOD comes out less strongly correlated than without
noise prior, and its spectrum closer to that of white noise. The
TOD thus averages out more efficiently when binned into a map,
leading to a lower noise level in map domain.

We plot in the same figure an analytical approximation

Papp( f ) =
P2wn

Pwn + Poof( f )
(31)

where Pwn and Poof are the spectra on the white noise com-
ponent and the 1/ f component, respectively. The approxima-
tion is obtained by setting F = I and Z = I in the destriping
equation (7). This approximation corresponds to making the fol-
lowing to assumptions: 1) Assuming that the baseline length is
one sample, so that the baseline vector has the same length as
the TOD itself. This assumption can be expressed as F = I. 2)
Assuming that there are an infinite number of observations per
pixel, so that we can ignore the pointing matrix term in the defi-
nition of the Z matrix in Eq. (8) when Z is acting on noise, and
set Z = I. These are serious approximations, but the analytical
model agrees well with the residual spectrum at high frequen-
cies, at the short-baseline limit. At low frequencies the approxi-
mation is poor.

The behaviour of the residual noise spectrum in the ab-
sence of noise prior is discussed in detail by Kurki-Suonio et al.
(2009).

7.3. Cl domain

Finally we study the residual noise in the Cl domain. We com-
pute the TT and EE angular power spectra of the CRN map using
the Anafast tool which is part of the HEALPix package.

In Fig. 15 we plot the spectrum of the CRN map for three
distinct baseline lengths (1 h, 1 min, and 0.625 s) together with
the spectrum of the binned noiseless map. Destriping resolution
was nside cross=512. We show low and high multipoles sepa-
rately. At high multipoles we bin the spectra over 16 adjacent
multipoles, in order to show the differences more clearly. The
TT plots begin at multipole l = 1, the EE plots at l = 2.

We show also the effect of a high destriping resolution
(nside cross=2048). This case is discussed in more detail in
Sect. 8. All spectra were computed from maps with resolution
nside map=512.

We see that a short baseline (0.625 s) gives systematically
lower residual noise than a longer one (1 min or 1 hour) at all

Figure 2: High-pass filtering effect from destriping (dashed lines) and generalized destriping (solid lines).
The untreated noise power spectrum is the black dashed line and for baselines longer than 15 seconds the
two destriping approaches yield identical results. The image is reproduced from [4].

It turns out that if the step function approximation of the correlated noise is good, the gener-
alized destriping results approach optimal GLS results[5]. This is the case for all instruments with
radiometer type noise spectrum. When high frequency correlations are present, analysis has two
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paths: leave the high frequency correlations untreated and simply characterize the residual (e.q.
through simulations) or apply the optimal GLS method.
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