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Introduction

In the ideal case of a full-sky and infinitely resolute observation of pure, isotropic, Gaussian
CMB fluctuations ∆T , the empirical power spectrum, namely, for ` ≥ 0, C̃` := 1

2`+1 ∑
`
m=−` a2

`,m
– where a`,m :=

∫
S ∆T (r)Y`,m(r)dr – would be a sufficient statistic. It would also be the maximum-

likelihood estimator of the true power spectrum C` := E(a2
`,m).

However, problems occur when one wants to take into account the fact that in reality: - the
spatial resolution of the instruments is limited - some experiments observe the sky only partially,
others require a mask on highly contaminated regions - there are foreground to be removed, and
a non-iid noise - maybe the fluctuations are not really isotropic nor Gaussian - the polarization
spectrum should be computed - data come from multiple experiments and multiple detectors for
each experiment, with possible calibration issues - the computational cost of the method must be
reasonable - etc. The aim of this contribution is to illustrate the possible use of needlets to address
some of these issues, namely :

1. the limitations due to beam smoothing and incomplete sky coverage (and/or masking),

2. the heteroscedasticity of the noise (which is still, however, supposed independent from one
pixel to another),

3. and, above all, the aggregation of multiple experiments, each with its own specifications
(beam, noise level (“hit map”), coverage, map resolution).

In the following, the amplitude of CMB fluctuations fluctuations are considered, and they are sup-
posed isotropic and Gaussian. The foregrounds are supposed removed (or included in the noise).

The use of needlets for some other of the above mentioned problems are addressed by other
contributions (Cf contributions by Remazeilles [13] for foregrounds removal and by Marinucci [11]
for Gaussianity tests). For the extension to polarization data, see [7, 3]. Other well-none methods
used for classical spectral estimators can be straightforwardly adapted to the present context: for
instance, computing the cross-spectra between detectors.

1. The needlet spectral estimators

1.1 Needlets

Starting from a function f on the sphere, the two following operations are equivalent :

1. Smoothing in the harmonic domain and sampling the smoothed map at some point rk:

f 7→ {a`,m} 7→ {b(`)a`,m} 7→ βk := ∑
`,m

b(`)a`,mY`,m(rk)

for some harmonic window function b(`).

2. Taking the scalar product between f and an axis-symmetric function centered at rk:

f 7→ βk :=
∫
S

f (r)ψk(r)dr

where ψk(r) = ∑` b(`)L`(〈r,rk〉), where L` is the Legendre polynomial of degree `.
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The first operation ensures reasonable computational cost, thanks to algorithms realizing fast
Fourier transforms on the sphere.

The second one, applied for a well-chosen family {b j(`)} j∈N of harmonic window functions
and for suitable adapted families of points {r j,k} j∈N,k=1:npix j

, enables to consider the resulting
coefficients β j,k as the so-called “needlet” coefficients of f on the frame {ψ j,k} j∈N,k=1:npix j

and to
deduce the properties of these coefficients β j,k from the ones of the functions ψ j,k, called “needlets”.

In particular, it has been shown [12] that the family of harmonic window functions can be
chosen in such a way that the needlets ψ j,k are a tight frame and possess the following localization
property:

∀m ∈ N, |ψ j,k(r)| ≤
cst(m)B j

(1+B jd(r,r j,k))m (1.1)

where B is a constant and d(·, ·) is the geodesic distance on S. That is, the needlet ψ j,k is localized
at r j,k with a tail decreasing at a “quasi-exponential” rate (polynomial of any order).

In the setting assuring (1.1), the harmonic window functions b j(`) are non-negative smooth
functions the support of which slips to infinity with increasing length. In the following, j will be
referred to the (harmonic) “scale” of the needlets.

Due to the constant in the numerator, (1.1) is useful essentially in the asymptotic of high
frequencies, when the scale j→ ∞. The optimization of non asymptotic localization properties of
the needlets by the design of the harmonic window functions was addressed in [8].

1.2 Statistical properties

In this subsection, we consider the needlet coefficients of the fluctuation field ∆T , which is
supposed zero-mean and isotropic. The following properties are obvious consequences of the two
equivalent constructions of needlet coefficients (the third one derives from (1.1)).

Proposition 1. Let ∆T be a zero-mean, isotropic field on S with (true) power spectrum C`. Let
b j(`) be harmonic window functions with compact support and, for each j, let (r j,k,λ j,k)k=1:npix j

in (S×R+)
npix j be a set of points and quadrature weights assuring exact quadrature of all poly-

nomials of degree in the support of b j. Then

(a) The square of each coefficient β j,k at scale j provides an unbiased estimator of the (smoothed)
power spectrum:

λ
−1
j,k E(β 2

j,k) =C( j) (1.2)
where C( j) := ∑

`∈N
2`+1

4π
b j(`)C`.

(b) The coefficients β j,k are (exactly) uncorrelated between non overlapping bands:

Cor(β j1,k1 ;β j2,k2) = 0 (1.3)
for all k1,k2, provided that b j1b j2 ≡ 0.

(c) The coefficients β j,k within a given scale j are asymptotically uncorrelated, when j→ ∞, pro-
vided that the corresponding points r j,k are not too close. More precisely, there exists a function
ϕ( j)−→

j→∞
0 such that

Cor(β j,k1 ;β j,k2)−→j→∞
0 (1.4)

as soon as
d(r j,k1 ,r j,k2)

ϕ( j)
−→
j→∞

∞.
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In practice,

(a) For “reasonable” pixelization schemes, λ j,k ≡
1

npix j
.

(b) Each harmonic window function overlaps only with the previous one and the next one, which
implies that (1.3) is valid as soon as | j1− j2|> 1.

(c) At a fixed scale j, we consider that Cor(β j,k1 ;β j,k2)≈ 0 if k1 and k2 are not too close.

More sophisticated statistical properties of the needlet coefficients can be found in [1, 2].

1.3 Needlet spectral estimators (NSE)

In this subsection, we consider the needlet coefficients of a set of observation maps
{

Y1(r), . . . ,YE(r)
}

where E independent observations (indexed by e) include the same signal of interest ∆T , each with
its own specifications: (inhomogeneous) noise level, coverage, beam, resolution. The different ob-
servations may come from different missions (e.g. one map from Planck and one from ACBAR)
or from different detectors of the same mission. Mathematically, we consider, for e = 1 : E, the
observations

Ye(r) = Me(r)
[
(Be ∗∆T )(r)+σe(r)Ze(r)

]
(1.5)

from which we compute the needlet coefficients

β j,k,e :=
∫
S

Ye(r)ψ j,k(r)dr.

In equation (1.5) Me is the mask (it can be any function, but in practice, for numerical inte-
gration, one will usually prefer to use a smooth function rather than a 0-1 one); Be is the instru-
mental beam, supposed axis-symmetric with transfer function Be,` and transfer function at scale j
B2

e,( j) := ∑`
2`+1

4π
(b j(`))

2B2
e,`; σe is the noise level (in general, proportional to the inverse square

root of the hit map); and Ze(r) are standard random variables.

The needlet coefficients β j,k,e are computed only outside the mask Me, and, even more, only
for points rk which are far enough from the mask. More precisely, a spatial index k is selected
only if

∫
S(1−We(r))2ψ2

j,k(r)dr is below some threshold (more discussion on the choice of the
thresholds are in [8, 6, 5]).

The standard deviation of the effect of the noise on β j,k,e is

n j,k,e =

(∫
S

σ
2
e |ψ j,k|2

)1/2

.

Definition 1. The proposed estimator for the smoothed power spectrum C( j) defined in Proposi-

4



Power spectrum estimation on the sphere using needlets Frederic Guilloux

tion 1 is:

ĈNSE
( j) :=

npix j

∑
k=1

w j,k

(
λ
−1
j,k

(
β̃ j,k

)2
−n2

j,k

)
(1.6)

where: β̃ j,k =
E

∑
e=1

ω j,k,e β j,k,e

ω j,k,e ∝
(
Be,( j)/n j,k,e

)2

n j,k =
(
∑e n−2

j,k,e

)−1/2

w j,k ∝ (C0 +n2
j,k)
−2,

C0 being an order of magnitude of C( j).

As demonstrated in [6], ĈNSE
( j) is almost the maximum-likelihood estimate of C( j) given the

β j,k,e.
The intermediate quantities involved in the NSE estimator can be interpreted in the following

way:

First step: aggregation of observations.

- β̃ j,k is an aggregated map computed from all the experiments which give observations around
the point rk, with weights ω j,k,e taking into account the local (local in space and in the
harmonic domain) signal-to-noise ratio of each observation, relatively to the snr ratio of the
other observations.

Figure 1 represents the weights ω j,k,e for a choice of six observations. The specifications of
the experiments are quite realistic, but intend only to illustrate the method.

Second step: combination of squared coefficients.

- n j,k is the debasing term, so that for each spatial index k = 1 : npix j, λ
−1
j,k (β̃ j,k)

2−n2
j,k is an

unbiased estimator of C( j).

Figure 2 (left) represents these unbiased estimators. Their variance is clearly dependent on
the region of the sky.

- the weights w j,k realize the optimal combination of these estimators, giving more importance
to regions where the aggregated snr ratio is better.

These weights w j,k are also represented on Figure 2 (right).

1.4 Theoretical (asymptotical) result

In [5], the details of the method are discussed, so that the following asymptotic consistency
theorem holds. The assumption that ∆T is Gaussian is needed only for this theorem.

Theorem 1. If the masks and noise levels in the experiments verify some technical conditions and
if the parameters of the method (harmonic window functions, thresholds) are properly chosen, then
‖ĈNSE

( j) −C( j)‖2

C2
( j)

−→
j→∞

0.
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Multiple experiments

DiBerent noise levels & hit maps ; DiBerent coverages ; DiBerent beams ; etc.

Joint estimation of power spectrum ?

e=1 (WMAP-Q) e=2 (WMAP-V) e=3 (WMAP-W)

e=4 (BOOMG-S) e=5 (BOOMG-D) e=6 (ACBAR)

Needlet spectral estimation 

(NSE) where (omitting the  j  indices) :

(njk,e beeing the needlet coe9cients 

of the noise level map)

band l ≈ 750

e=1 (WMAP-Q) e=2 (WMAP-V) e=3 (WMAP-W)

e=4 (BOOMG-S) e=5 (BOOMG-D) e=6 (ACBAR)

1st step: aggregation of experiments

Figure 1: Top: masks Me (in grey) and noise levels σe of six experiments. Bottom: corresponding aggrega-
tion weights ω j,k,e for a given scale j (selecting harmonic multipoles around `' 750).Needlet spectral estimation 

(NSE) where (omitting the  j  indices) :

2nd step: averaging over the sphere

1st step: aggregation of experiments

(« SNR ratio », C° being the order of
magnitude of the true spectrum)

aggreg’d map in band  j

averaging weights w

Needlet spectral estimation 

(NSE) where (omitting the  j  indices) :

2nd step: averaging over the sphere

1st step: aggregation of experiments

(« SNR ratio », C° being the order of
magnitude of the true spectrum)

aggreg’d map in band  j

averaging weights w

Figure 2: Left: debased aggregated map of needlet coefficients (for the same scale j as in Figure 1), i.e.
the quantity into the parentheses in equation (1.6). Right: corresponding combination weights. The NSE
estimator is obtained by the summation over the sphere of the product of the left and right maps.
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PCLGU:'pseudoGCl'with'uniform'preGweighting'
PCLGW:'pseudoGCl'with'inverseGvariance'preGweighting'

Automatically'achieves'≈'Efstathiou'(04,06)'’s'hybrid'estimator'
Figure 3: Normalised Mean Squared Error (i.e. ‖ĈNSE

( j) −C( j)‖2/C2
( j)) for three different estimators. The

normalized MSE are estimated from simulated data following a model with known mask and noise level
map.

2. Simulation studies

2.1 Single experiment (comparison with Pseudo-C`’s)

In a first simulation study, we consider only one single (WMAP-like) observation (E = 1), and
we compare our estimator with the “pseudo-Cl” (PCL) estimators. The latter are computed in the
following way:

- For PCL-U, the empirical spectrum of the data C̃` := 1
2`+1 ∑

`
m=−`(

∫
SYY`,m)2 is debiased

from the effect of the mask and the noise : ĈPCL−U
` = (M`,`′)

−1{C̃`′ −N`′} where N` is
the power spectrum of the noise and M is the “coupling matrix” of the mask. Finally,
ĈPCL−U
( j) = ∑`

2`+1
4π

b j(`)ĈPCL−U
` .

- For PCL-W, 1/σ -preweighting is applied to the date before computing and debiasing the
empirical spectrum : Ỹ (r) = σ−1(r)Y (r) and ĈPCL−W

( j) is nothing else but ĈPCL−U
( j) applied to

the data Ỹ , the mask σ−1M and homogeneous noise.

More details on these procedures are given, for instance, in [9], and in [6, appendix A].
Figure 3 compares the performance of the three estimators: ĈPCL−U , ĈPCL−W and ĈNSE . Our

estimator behave like the best of the previous ones at low `’s and high `’s, and improves both at
medium `’s. In fact, the needlet estimator realizes automatically and blindly something similar to
the hybrid estimator of Efstathiou [4].

2.2 Multiple experiments (new possibility of joint estimation)

In a second simulation study, we come back to the whole set of E = 6 observations presented
in subsection 1.3 (Figures 1-2). The details of the experiments’ specifications are in [6]. In this
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Fig. 9.— A compilation of recent CMB power spectrum measurements compared to the best-fit ΛCDM
model from the first-year WMAP data. The data points include noise and cosmic variance uncertainty (but
not calibration uncertainty) thus we omit the cosmic variance band from the model curve in the Figure. On
average, the pre-WMAP data agree well with the WMAP power spectrum.

4 J. Fowler et al.

Fig. 1.— Recent measurements of the CMB power spectrum, including this work. Top: the measurements of WMAP (Nolta et al.
2009), Bolocam (Sayers et al. 2009), QUaD (Brown et al. 2009; Friedman et al. 2009), APEX-SZ (Reichardt et al. 2009a), ACBAR
(Reichardt et al. 2009b), SZA (Sharp et al. 2009), BIMA (Dawson et al. 2006), CBI (Sievers et al. 2009), and SPT (Lueker et al. 2009). For
all the results, a radio point source contribution has been removed either by masking before computing the power spectrum (at 150 GHz),
or by masking and modeling the residual (at 30GHz and for WMAP). APEX-SZ additionally masks clusters and potential IR sources.
Bottom: The ACT power spectrum from this work. The inset shows the cross-power spectrum between ACT and WMAP maps in the ACT
southern field (see Section 3.5), which we use to check both the validity of the maps at larger scales and the absolute calibration. Only the
ACT power spectrum is analyzed in this paper. In both panels and the inset, the solid curve (blue) is the ΛCDM model of Dunkley et al.
(2009) (including lensing). The SZ effect and foreground sources are expected to contribute additional power, as shown in Figure 4 and
Table 1. For display purposes—and only in this figure—we scale our result by 0.96 in temperature relative to the Uranus calibration; this
calibration factor best fits our data to the ΛCDM model and differs from the Uranus calibration by 0.7σ. Recent WMAP observations of
Uranus suggest the same rescaling factor (see footnote to Section 3.2). ACT bandpowers for " > 4200 have been combined into bins of
∆" = 600 for this figure; they are given in a note to Table 1.

speed of 1.◦5 /s followed by 0.9 s of acceleration. The first
half of each night is spent observing the field rising in the
eastern sky, after which ACT turns to the western sky
to observe the same field as it sets through the standard
elevation of 50◦. The scan strategy is designed to mini-
mize changes in the telescope’s orientation with respect
to the local environment while ensuring cross-linked ob-
servations in celestial coordinates. Sky rotation ensures
that all detectors sample all points in the field each night,

apart from small areas at the edges.
As the telescope scans in azimuth at constant elevation,

each detector is sampled at 399Hz. The data sampling,
position reading, and all housekeeping data are synchro-
nized by a shared 50MHz clock; absolute times are ref-
erenced to a GPS receiver with 0.25ms accuracy. The
data are stored in continuous fifteen-minute segments
called time-ordered data sets (TODs). Each TOD re-
quires 1.6GB of storage per detector array, or 600MB

Figure 4: Top: Examples found in the literature of graphical presentations of the estimation of the power
spectrum based on multiple experiments. Bottom: NSE estimation of the power spectrum from simulated
multiple experiments.

context, as far as I know, there is no other method which uses all the data set to produce one
estimated spectrum to which we could compare (if we except, of course, the parametric estimation
of the power spectrum via the estimation of cosmological parameters from the experiments). The
only possible comparison would be between something like the top and the bottom of Figure 4.

In order to understand how the method works, we can apply it separately to the WMAP-like
observations alone; then to the BOOMERanG-like ones; and then to the ACBAR-like one. The
results are shown in Figure 5 and may be compared to the result obtained by applying the method
with all the six observations together (Figure 4, Bottom). At each scale, the latter is better than the
estimation from the best experiment considered alone.

Figure 6 shows the correlation (estimated by monte carlo simulations) between this aggregated
estimator on the one hand, and the estimators based on a single experiment on the other hand. It
illustrates the fact that at low `, one could obtain the same estimation using only WMAP data, since
the correlation is ' 1. As well, at high `, the same estimation is given by ACBAR only. But in a
wide range of medium `’s, the aggregated estimator is significantly correlated with 2 or 3 missions,
and significantly different from one of this mission taken separately. That is, one would certainly
benefit from estimating the power spectrum jointly from the missions taken together.

Conclusion

Estimation of the power spectrum from needlet coefficients has some drawbacks. The principal
one is that only a smoothed version of the power spectrum can be estimated, and the choice of this
“binning” scheme is not independent of the optimization of the needlets’ localization – and thus,
of the performance of the estimation.
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Figure 5: Estimators computed from single experiments observations. For WMAP, a resolution of
nside=512 was used, so the numerical spherical harmonic transform can be done only at low `.
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Figure 6: Correlation between estimators using only the observation from a single mission, and the estimator
which aggregate the observations from all the missions.

However, the method has important advantages:

1. It fulfills L. Knox’s requirements [10]: simple to understand, to implement and to interprete;
computationally efficient.

2. It adapts automatically and optimally to the local signal-to-noise ratio – local both in the
spatial and the harmonic domains.

3. It provides a way to aggregate complementary data sets in a very natural manner, taking au-
tomatically into account the various specifications (beams, masks, noise levels, resolutions)
of the observations.

The third point is probably the most crucial. For the moment it was tested only on toy exam-
ples, but we are convinced that the method could apply to present and future real data sets. This
implies that the data from all the missions are publicly available, with enough information on their
specifications.
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