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We present a general method for accelerating by more than an order of magnitude the convolution
of pixelated function on the sphere with a radially-symmetric kernel. Our method splits the kernel
into a compact real-space, and a compact spherical harmonic space component that can then
be convolved in parallel using an inexpensive commodity GPU and a CPU, respectively. We
provide models for the computational cost of both real-space and Fourier space convolutions and
an estimate for the approximation error. Using these models we can determine the optimum
split that minimizes the wall clock time for the convolution while satisfying the desired error
bounds. We apply this technique to the problem of simulating a cosmic microwave background
sky map at the resolution typical of the high resolution maps of the cosmic microwave background
anisotropies produced by the Planck space craft. For the main Planck CMB science channels we
achieve a speedup of over a factor of ten, assuming an acceptable fractional rms error of order
10−5 in the (power spectrum of the) output map.
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—————————————————————————-

1. Introduction

Cosmic microwave background (CMB) experiments, such as Planck (Planck Collaboration
2011), the Atacama Cosmology Telescope (Kosowsky 2003), the South Pole Telescope (Ruhl
2004), and CMBPol (Baumann et al. 2009) promise a great wealth of cosmological and astro-
physical information (Smoot 2010). The most common operation in CMB data analysis consists of
convolving a real or a synthetic map with a radial kernel. Large numbers of such smoothing or filter-
ing operations are necessary for many critical data analysis applications, such as the simulation of
CMB maps (Gorski et al. 2005), map-making from multichannel maps (Tegmark 1997; Natoli et al.
2001; Stompor et al. 2001; Patanchon et al. 2008; Sutton et al. 2010), iterative calculation of inverse
covariance weighted data, e.g. in the context of optimal power spectrum estimation or Wiener fil-
tering (Wandelt et al. 2004) wavelet analysis (Hobson et al. 1999; Martinez-Gonzalez et al. 2002;
Vielva et al. 2004), point-source removal (Tegmark & de Oliveira-Costa 1998; Gonzalez-Nuevo
et al. 2006), and analysis of errors. The future Euclid mission (Laureijs et al. 2011b) will resolve
the sky to sub-arcsecond resolution, and one technique for identifying overdensities in such a map
is via convolution with a filter.

Until recently, the near-exclusive practice in the CMB community to compute radial kernel
convolutions was to use the spherical convolution theorem: transformation to spherical harmonic
space, multiplying the spherical harmonic coefficients with the l-space representation of the radial
kernel and back-transformation to pixel space. As a consequence of the ubiquity of radial kernel
convolution for data analysis on the sphere and the ready availability of software implementing the
discrete forward and backward fast Spherical Harmonic Transformation (SHTs), this has become
the major application for SHTs. Interest in the actual alm is relatively rare by comparison.

Graphics Processing Units (GPUs) offer a promising solution to the computational challenges
posed by radial kernel convolution to current and upcoming data sets on the sphere (Brunner et al.
2007; Barsdell et al. 2010; Fluke et al. 2011) due to their low cost and high degree of parallelism.
Indeed, the recent rise of cheap GPU hardware and associated extensive programming libraries
have led to their use in many applications in astrophysics, such as the analysis of the Lyman-α
forest (Greig et al. 2011), dust temperature calculations (Jonsson & Primack 2010), magnetohydro-
dynamics (Pang et al. 2010), adaptive-mesh refinement simulations (Schive et al. 2010), analysis
of data from the Murchison Widefield Array (Wayth et al. 2007), volume renderings of spectral
data from the Australian Square Kilometer Array Pathfinder mission (Hassan et al. 2011), and
visualizations of large-scale data sets (Szalay et al. 2008).

While GPU implementations of the SHT (Hupca et al. 2010; Szydlarski et al. 2011) have only
achieved modest speed-ups, Elsner & Wandelt (2011; hereafter EW11) tackled the problem of
spherical convolutions for compact radial kernels by specifically designing an algorithm adapted
to benefit from high degree of parallelism and memory bandwidth for compact kernels. Compared
to the serial time of a highly optimized implementation of the Fast SHT algorithm, EW11 demon-
strated a speed-up of up to a factor of 60 using a commodity GPU costing $500 with the further
benefit of strongly suppressing Fourier ringing artifacts. Other approaches, such as optimizing
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traditional algorithms (Muciaccia et al. 1997) and using large-scale computing resources (Gheller
et al. 2007), either do not scale as efficiently or do not exploit readily available hardware.

The main limitation of the method described by EW11 is that significant speed-ups can only be
achieved for relatively compact kernels. While there are still many applications for such compact
kernels, such compactness can lead to unreasonable artefacts in the resulting smoothed maps. To
take advantage of the power of GPUs with kernels of arbitrary size, we must split the given kernel
between a real-space portion, which will be applied using a GPU, and an `-space (i.e., Fourier)
portion, which will be applied using traditional CPU methods. Each portion of the full kernel will
then necessarily be truncated, resulting in a small, but predictable, error. Given an upper bound for
an acceptable error, we must determine the optimal splitting between real- and `-space in order to
achieve maximum performance.

In this work we present scytale 1, a tool for splitting kernels between truncated real- and
`-space portions, estimating the errors due to the truncations, and discovering the optimum trun-
cations for a given kernel. We apply this tool to determine the expected speedup when splitting a
given kernel between the GPU code ARKCoS of EW11 and the CPU code libpsht of Reinecke
(2011). In Section 2 we discuss our strategy for splitting kernels, estimating errors, and determin-
ing the optimum truncations. We present an analysis of the errors and our optimization results in
Section 3, followed by a discussion and conclusion in Section 4.

2. Splitting formalism & Optimization Strategy

We decompose a given kernel K` into truncated `-space and real-space portions, which we
denote as K̂` and K̂θ , respectively. We may then construct an approximate kernel as

K̃` = K̂`+ P̀ θ K̂θ , (2.1)

where P̀ θ is a Legendre transformation operator. We truncate the `-space kernel to a limit `cut

and the real-space kernel to a limit θcut. Once we have the truncated kernels, we can evaluate the
resulting error by taking the fractional root mean square:

σ
2 = α

2 σ2
rms

1/4π ∑(2`+1)K2
`

, (2.2)

where the sum run from 0 to `max. The constant α represents any additional errors introduced by
the actual convolution, such as those caused by single-precision arithmetic and inadequate kernel
interpolation, and must be empirically determined. Thus, given a particular kernel, this procedure
allows us to identify values of `cut and θcut that satisfy a given error bound.

If a particular `cut and θcut satisfy an error bound, we then estimate the computational cost as-
sociated with the truncated kernels. We assume the real-space portion will be solved using ARKCoS
on a GPU, so we denote the cost as tARKCoS. Similarly, we assume the `-space kernel will be solved
using the standard library libpsht on a CPU, and hence we will denote the cost as tlibpsht. The
cost for applying the real-space GPU kernel is

tARKCoS = 0.0232s θcut +2.428s (2.3)
1We take the name from the ancient cryptographic system where only rods of a precise radius could be used to

decode messages.

3



P
o
S
(
B
i
g
3
)
0
3
4

Accelerating convolutions on the sphere P.M. Sutter

and the cost for the `-space CPU kernel is

tlibpsht = 160s
`2

cut`max

40963 . (2.4)

Above, θcut is in arcminutes. To determine these scalings we used an NVIDIA GeForce GTX 480
GPU and a 2.8 GHz Intel Core2 Quad CPU. Our GPU scaling is different than the study of EW11
due to updated NVIDIA drivers. Note that the CPU timing assumes the use of only a single core.
We assume throughout a data set with HEALPix (Gorski et al. 2005) resolution nside = 2048 and
`max = 4096, consistent with Planck observations (Mennella et al. 2011). Furthermore, we assume
a power spectrum derived from WMAP 7-year results (Komatsu et al. 2011).

We assume that the GPU and CPU portions can be solved in parallel, and hence our goal for
a given kernel is to find the pair (`cut,θcut) that satisfies the error bound and at which tARKCoS =
tlibpsht, minimizing the overall cost.

3. Results

We study radially-symmetric kernels of the type

K` =
√

C`B`, (3.1)

where C` is the expected power in the given `-space bin and B` is the Legendre transform of a
beam. We assume an identical band limit of `max for both the input power spectrum and the kernel.
These particular kernels have a wide variety of applications. We assume a Gaussian beam with
a given FWHM. For this analysis, we will also assume Cinput

` ∼ 1 (that is, the case of simulating
CMB maps with uncorrelated noise).

We begin with an analysis of splitting a single kernel. We show in Figure 1 an example kernel
produced with a 7 arcmin FWHM beam. We truncate the kernel and the input power spectrum at
`max = 4096. This narrow beam produces wide support to significantly high `: only past `≈ 2000
does the kernel drop below 1% of

√
C`.

We show in Figure 2 an example of the truncated kernels computed by scytale. In this
example the real-space kernel (K̂θ ) is truncated at θcut = 240 arcmin and the `-space (K̂`) kernel is
truncated at `cut = 1500. For clarity, we have plotted the absolute value of the real-space kernel.
As expected, the `-space kernel faithfully reproduces the low-` portion of the full kernel while the
real-space kernel matches the high-` regime. In order to fit the behavior of the full kernel at high `,
the real-space kernel produces large oscillations at low `, which are compensated by percent-level
adjustments in the `-space kernel. Summed together, these kernels reproduce the full input kernel,
except at the very highest ` where the low magnitudes make a full fit difficult.

Figure 3 shows the truncated real-space kernel in real space itself. Even though our computa-
tional approach damps oscillations in `-space (where the fits to the full input kernel take place) we
see rapid oscillations in the actual kernel that ARKCoS uses in its real-space approach. We must
accurately interpolate this kernel, especially at small angles, in the convolution algorithm in order
to both recover the high-` behavior and correctly calculate the systematic offsets present in the
low-` portion of the approximate kernel. To do this, we employ a simple bias where we place half
the available interpolation nodes within the first 1/16th of the available support; in this case, within
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Figure 1: Example kernel for a beam with 7 arcmin FWHM.

7.5 arcmin. We found this bias to be a good compromise between the need to carefully interpolate
the innermost portions of the kernel and the need to maintain a sufficient number of interpolation
points throughout the rest of the kernel.

The approximate kernel faithfully represents the full input kernel below the truncation thresh-
old of the `-space kernel at `= 1500, which we see in Figure 4. In this figure we show the relative
error, defined as

σ` = log10

∣∣∣∣∣1− K̃`

K`

∣∣∣∣∣ . (3.2)

In this figure we see three distinct regimes. The first, from ` =0-1500 where the `-space kernel
dominates, has essentially zero error. From `=1500 to roughly 3000, we maintain a relative error
of roughly 10−5. In this region the real-space kernel is best able to reproduce the full input kernel.
Finally, at the highest `, the real-space kernel has difficulty following the input kernel and the
errors begin to exponentially diverge, reaching 100% relative error at `max = 4096. However, the
beam strongly suppresses the kernel here and the high-magnitude low-` portion dominates our error
estimate. Therefore we can ultimately satisfy a given overall error bound.

To evaluate the actual performance of each kernel, we applied them to a uniform-noise input
map and extracted the spectra. We compare these spectra in Figure 5. We show the power spectrum
after convolving with the full `-space kernel K`, the truncated `-space kernel K̂`, and the truncated
real-space kernel K̂θ . We also show the power spectrum of the summed map. We see that we
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Figure 2: Truncated `-space kernel (solid line) and Legendre-transformed truncated real-space kernel
(dashed line) for the example input kernel with 7 arcmin beam. The `-space kernel is truncated to `cut = 1500
and the real-space kernel to θcut = 240 arcmin . To highlight the oscillations, we plot the absolute value of
the real-space kernel.

are able to recover the desired power spectrum using the truncated kernels, except at the highest
` range, where interpolation errors and the limitations of single-precision arithmetic in the GPU
introduce deviations.

Figure 6 shows the relative error between the power spectrum obtained by summing the maps
produced by the truncated kernels and spectrum obtained by using the full `-space kernel. We see
similar structure to the estimated relative error, but in this case the errors are not negligible below
`cut = 1500. Here, the difficulty of adding the small component due to the real-space kernel to the
`-space kernel is apparent. After `= 1500 we see small oscillations around the full power spectrum
followed by the expected exponential rise in the relative error. Altogether, we found the total error
to be a factor of five higher than estimated due to these numerical effects. Thus we set the constant
α in Eq.(2.2) to five.

In Figure 7 we show the map after convolving with the full `-space kernel. We also show the
difference between this map and sum of the maps produced by convolution with the truncated `-
space and real-space kernels. We maintain small errors throughout the entire map, with the largest
errors at the smallest scales, as expected. In Figure 8 we show a 5-degree patch of the same maps.
We see that the `-space kernel reproduces the full map to percent-level accuracy. However, the
real-space kernel is necessary to correctly construct the small-scale power and reduce the error to
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Figure 3: Truncated real-space kernel for the example input kernel with 7 arcmin beam. To highlight the
oscillations, we plot the absolute value of the kernel.

acceptable limits.
We compare our estimated RMS error to the actual map and power spectra errors in Figure 9

for a selection of `cut values with a fixed θcut = 240 arcmin and the same 7 arcmin beam that we
have thus far used. For this plot, we have set the empirically-determined constant α to five. With
this chosen constant, our error estimate matches the actual error in the power spectra until an `cut

of 2500. At higher `cut values, we overestimate the spectrum errors, but since this lies below our
chosen error bound of 10−5 (see below) we choose to maintain this value of α . The maps tend to
produce higher errors, but since our quantity of interest is the derived power spectrum, we choose
to match those errors.

With all this in place we now turn to our scanning strategy and results of our optimization
study. We examine beams with 1-10 arcmin FWHM, which are most relevant to the Planck mis-
sion (Mennella et al. 2011). Table 1 shows the optimum (`cut,θcut) pairs for five of the ten beam
sizes studied, assuming a maximum error bound of 10−5. Below 6 arcmin we could not find
suitable truncations that still maintained our desired error bound. We see that all truncations are
essentially identical, indicating that the ability to split these kernels is binary: either no optimum
truncations can be found, but if optimum truncations can be found they will be very aggressive.
For these beam sizes, the optimum `cut values that satisfy the error bounds are significantly below
`max, which promise significant enhancements in performance.
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Figure 4: Estimated relative error of the example approximate kernel K̃` to the full kernel K`. Shown is
the relative error as a function of `. For this example, the `-space kernel is truncated to `cut = 1500 and the
real-space kernel to θcut = 240 arcmin.

Table 1: Optimum `cut and θcut pairs for each beam FWHM studied, assuming an error bound of 10−5.

Beam FWHM (arcmin) `cut θcut (arcmin)
7 1158 390
8 1070 390
9 1055 360

10 979 360
11 1014 330
12 960 330
13 940 330
14 929 300
15 961 270
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Figure 5: Derived power spectra after convolving a uniform-noise map with various kernels. The kernels
used are: the full `-space kernel K` (pink), the truncated `-space kernel K̂` (red), and the truncated real-space
kernel K̂θ (green). The blue line shows the power spectrum of the map created by summing the individual
maps of the two truncated kernels. For this example, the `-space kernel is truncated to `cut = 1500 and the
real-space kernel to θcut = 240 arcmin.

We show in Figure 10 the speedup versus beam FWHM for these beam sizes and our error
bound of 10−5. We define the scaling as the time to solution with our split approach relative to the
cost of applying the entire kernel (i.e., up to `max) on the CPU with libpsht. Below 7 arcmin,
we find no optimum truncations and hence do not show them. We see significant performance
gains above 7 arcmin, with the speedups plateauing in the range 12-15. This speedup implies a
reduction in the computational time from 160 seconds to approximately 12 seconds for a single
convolution operation. Since all the truncations are essentially the same above 7 arcmin, we find
nearly identical speedups regardless of the beam size.

4. Conclusions

We have introduced and discussed a method for splitting radially-symmetric kernels into trun-
cated real- and Fourier-space components and estimating the errors associated with such splitting.
We have validated our error estimation by performing convolutions with the truncated kernels and
computing the actual resulting error. We have found that for Planck-sized data sets, a large range
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Figure 6: Actual relative error of the approximate kernel K̃` to the full kernel K` after convolution. Shown
is the relative error as a function of `. For this example, the `-space kernel is truncated to `cut = 1500 and
the real-space kernel to θcut = 240 arcmin.

of kernels can be split into significantly truncated portions while still maintaining an acceptable
(∼ 10−5) error bound, leading to significant speedups.

Our analysis was focused on an ideal case; i.e., situations where there is no noise and where
the input power spectrum remains flat. This is the worst-case scenario. In the case where noise
dominates the high-` regime we found speedups of order ∼ 20, since we could relax the criterion
of strictly matching the structure of the full kernel in this region.

Our approach is currently limited to `∼ 4000 due to the finite amount of fixed memory avail-
able on single current-generation GPUs. An all-sky convolution up to ` = 8000 or 16000 would
require splitting the problem across multiple GPUs, as discussed below. However, current experi-
ments that probe this regime, such as ACT (Kosowsky 2003) and SPT (Ruhl 2004), only map on
the order of hundreds of square degrees. By re-orienting their survey maps onto the polar cap,
we can keep the number HEALPix rings small and exploit our algorithm with currently-available
GPUs.

The ARKCoS code also has a CPU-based implementation, allowing our approach to work on
homogeneous architectures. While the speedups in the CPU-only case are not as significant, we
can still take advantage of the parallelism offered by the compact real-space kernels. In this sce-
nario, the truncated `-space kernel can be convolved using traditional parallel spherical harmonic
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(a) full kernel

(b) difference

Figure 7: (a) Map after convolving a uniform-noise input map with the full `-space kernel K`. (b) The
difference between the map in panel (a) and the map constructed by summing the convolution outputs of the
truncated `-space kernel K̂` and the truncated real-space kernel K̂θ . For this example, the `-space kernel is
truncated to `cut = 1500 and the real-space kernel to θcut = 240 arcmin.
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(a) full kernel (b) l-space difference (c) real-space kernel

Figure 8: (a) Five-degree patch of the map convolved with the full unsplit kernel. (b) Difference between the
map in panel (a) and the map produced by convolving with the truncated `-space kernel K̂`. (c) Map created
by convolving with the truncated real-space kernel K̂θ . For this example, the `-space kernel is truncated to
`cut = 1500 and the real-space kernel to θcut = 240 arcmin.
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Figure 9: Estimated RMS error computed by scytale with α = 5 (red stars) versus actual RMS error in
the maps produced by convolution with a uniform-noise map (green circles) and the RMS error in the power
spectra derived from those maps (blue triangles). The lines do not represent data but are shown as visual
aids.
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Figure 10: Speedup versus beam FWHM assuming an overall error bound of 10−5.

transform operations on a few cores (such as ccSHT 2), where the parallel scalability is strongest,
while the truncated real-space kernel can be convolved using many cores in parallel in the manner
described above.

Kernel splitting enables the efficient allocation of resources for tackling large data sets; in
our case, by applying real-space kernels with a GPU and `-space kernels with a CPU. We have
applied this kernel splitting scheme to an optimization study to find the realistic speedups associated
with splitting a kernel between a compact portion to be solved on a GPU and the remainder on a
CPU. Applying this to kernels and data sets appropriate for the Planck mission, we find that this
splitting technique can lead to over a factor of ten speedup compared to traditional fully CPU-
based approaches. This significantly improves the feasibility of many necessary and important
data analysis operations, such as wavelet analysis, point source removal, and map making.
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