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1. Introduction

In perturbative quantum Cheromodynamic calculations, the production of heavy quarks at
HERA proceeds dominantly via the direct Boson-gluon fusion where the photon interacts with a
gluon from the proton by the exchange of a heavy quark pair. With respect to the recent measure-
ments of HERA, the charm contribution to the structure function at smallx is a large fraction of the
total, as this value is approximately 30% fraction of the total [1]. This behavioris directly related
to the growth of the gluon density at smallx, as gluons couple only through the strong interac-
tion. Consequently, the gluons are not directly probed in DIS, only contributing indirectly is via
the g → q + q. This involves the computation of the BGF processγ∗ + g → c + c. In this work,
we study the charm structure functions behavior with respect to the gluon distribution behavior at
NLO analysis. Then we present the ratio of the charm structure functions, which is independent of
the gluon distribution.

2. Mathematical Formalism

The deeply inelastic charm structure functions in the cross section is givenby [2]

Fc
k (x,Q2,m2

c) = 2e2
c

αs(µ2)

2π

∫ 1−x

1− 1
a

dzCc
g,k(1− z,ζ )×G(

x
1− z

,µ2), (2.1)

wherea = 1+4ζ (ζ≡m2
c

Q2 ), G(x,µ2) is the gluon distribution function andµ is the mass factorization

scale, which has been put equal to the renormalization scalesµ2 = 4m2
c or µ2 = 4m2

c + Q2. Here
Cc

g,k is the charm coefficient functions in LO and NLO analysis as

Ck,g(z,ζ ) → C0
k,g(z,ζ )+as(µ2)[C1

k,g(z,ζ )+C
1
k,g(z,ζ )ln

µ2

m2
c
], (2.2)

whereas(µ2) = αs(µ2)
4π and in the NLO analysis

αs(µ2) =
4π

β0ln(µ2/Λ2)
−

4πβ1

β 3
0

lnln(µ2/Λ2)

ln(µ2/Λ2)
(2.3)

with β0 = 11− 2
3n f ,β1 = 102− 38

3 n f (n f is the number of active flavours). In the LO analysis, the
coefficient functions BGF can be found [3], as

C0
g,2(z,ζ ) =

1
2
([z2 +(1− z)2 +4zζ (1−3z)−8ζ 2z2]×ln

1+β
1−β

+β [−1+8z(1− z) (2.4)

−4zζ (1− z)]),

and

C0
g,L(z,ζ ) = −4z2ζ ln

1+β
1−β

+2β z(1− z), (2.5)

whereβ 2 = 1− 4zζ
1−z . At NLO, O(αemα2

s ), the contribution of the photon- gluon component is

usually presented in terms of the coefficient functionsC1
k,g,C

1
k,g. Using the fact that the virtual
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photon- quark(antiquark) fusion subprocess can be neglected, because their contributions to the
heavy-quark leptoproduction vanish at LO and are small at NLO. In a wide kinematic range, the
contributions to the charm structure functions in NLO are not positive due tomass factorization.
Therefore the charm structure functions are dependence to the gluonicobservable in LO and NLO.
The NLO coefficient functions are only avaliable as computer codes. Butin the high- energy regime
(ζ << 1) we can used the compact form of these coefficients according to the Ref.[4].

3. The Hard- Pomeron behavior Method

The small- x region of the DIS offers a unique possibility to explore the Reggelimit of PQCD.
HERA data for the charm structure functions require only a hard pomeronas the coupling of the soft
pomeron to charm is apparently very small. Exploiting the low-x behavior of thegluon distribution
function according to the hard (Lipatov) pomeron as

G(x,µ2)→x−λg . (3.1)

The power ofλg is found to be eitherλg≃0 or λg≃0.5. The first value corresponds to the soft
Pomeron and the second value to the hard (Lipatov) Pomeron intercept. Based on the hard (Lipa-
tov) pomeron behavior for the gluon distribution, let us put Eq.(3.1) in Eq.(2.1). After doing the
integration overz, Eq.(2.1) can be rewritten as [5]

Fc
k (x,Q2,m2

c) = 2e2
c

αs(µ2)

2π
Ik(x,µ2)×G(x,µ2), (3.2)

where

Ik(x,µ2) =
∫ 1−x

1− 1
a

Cc
g,k(1− z,ζ )(1− z)λgdz, (3.3)

hereCc
g,k is defined by Eq.2.2. In fact, the gluon distribution function inputG(x,µ2) does cancels

in the ratio of the charm structure functions as we have [5]

Rc =
IL(x,µ2)

I2(x,µ2)
. (3.4)

Therefore, this ratio ,which is independent of the gluon distribution function, is very useful for
practical applications. In this equation we used the solutions of the NLO BGF analysis and consid-
eredλg as a hard (Lipatov) Pomeron.

4. The Expanding Method

Now we want to calculate the charm structure functions by using the expansion method for the
gluon distribution function [6]. As can be seen, the dominant contribution to the charm structure
functions comes from the gluon density at smallx, regardless of the exact shape of the gluon
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distribution. The argumentx1−z of the gluon distribution in Eq.2.1 can be expanded at an arbitrary
point z = α as

x
1− z

|z=α =
x

1−α

∞

∑
k=1

[1+
(z−α)k

(1−α)k ]. (4.1)

The above series is convergent for|z−α |< 1. Using this expression we can rewrite and expanding
the gluon distributionG( x

1−z) as [6]

G(
x

1− z
) = G(

x
1−α

)+
x

1−α
(z−α)

∂G( x
1−a)

∂x
+O(z−α)2. (4.2)

Retaining terms only up to the first derivative in the expansion and doing the integration, we obtain
our master formula as

Fc
k (x,Q2,m2

c) = 2e2
c

αs(µ2)

2π
Ak(x)×G(

x
1−α

(1−α +
Bk(x)
Ak(x)

)), (4.3)

where

Ak(x) =
∫ 1−x

1− 1
a

Cc
g,k(1− z,ζ )dz, (4.4)

and

Bk(x) =
∫ 1−x

1− 1
a

(z−α)Cc
g,k(1− z,ζ )dz. (4.5)

whereCc
g,k is defined at Eq.2.2 in LO and NLO analysis and alsoα has an arbitrary value 0≤α<1.

Eq.4.3 can be rewritten as [6]

Fc
k (x,Q2,m2

c) = 2e2
c

αs(µ2)

2π
ηkG(

x
1−α

(βk −α),µ2). (4.6)

This result shows that the charm structure functionsFc
k (x,Q2) at x are calculated using the gluon

distribution at x
1−α (βk −α). Therefore, the gluon distribution atx1−α (βk −α) can be simply ex-

tracted the charm structure functions (Fc
2 andFc

L ) in the lowx values according to the coefficients
at the limit x→0, in Table 1 at Ref.[6]. Moreover, there is a directly relation between the charm
structure functions and gluon distribution via the well known Bethe- Heitler processγ⋆g→cc̄.

Now, we defining the ratio of the charm structure functions and obtain the following equation

Rc =
ηL

η2

G( x
1−α (βL −α)

G( x
1−α (β2−α)

. (4.7)

We observe that the right-hand side of this ratio is independent ofx and independent of the gluon
distribution input according to the coefficients in Table 1 at Ref.6. As in the lowx range we have

Rc≈
ηL

η2
, (4.8)

which is very useful to extract the charm structure functionFc
2 (x,Q2) from measurements of the

doubly differential cross section of inclusive deep inelastic scattering atDESY HERA, independent
of the gluon distribution function.
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5. Results and Conclusion

We present the numerical results [5,6] for both two methods and compared our results with
the experimental data (H1 Collab. [7]) and other methods [8-10]. In conclusion, these methods are
useful to extract the charm structure function from the reduced charmcross section. The agreement
between our predictions with the results obtained by H1 Collaboration using a more accurate but
rather cumbersome procedure is remarkably good. Also the ratio of the charm structure functions
is independent of x and independent of the parton distribution function input.
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Figure 1: The charm component of the structure function [5] for different values ofQ2 (12, 45, 120 and
200 GeV 2) as function ofx. These results are the NLO predictions that accompanied to the theoretical
uncertainty related to the renormalization scales. The solid and dash curves representsFc

2 for DL [3-5] and
color dipole [25] models. Data are from H1 and ZEUS Collab. that accompanied to the total errors [15].
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Figure 2: The charm component of the longitudinal structure function[5] at the Q2 values 12, 45, 120
and 200GeV 2 as function ofx.These results are the NLO predictions that accompanied to the theoretical
uncertainty related to the renormalization scales. The solid curves representsFc

L from the color dipole [25]
model.
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Figure 3: The ratioRc = Fc
L /Fc

2 [5] as a function ofx for different values ofQ2 in NLO analysis.
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Figure 4: The ratioRc evaluated [6] as function ofQ2 at NLO analysis from Eq.16. The error bars are the
theoretical uncertainty using the renormalization scalesµ2 = 4m2

c andµ2 = 4m2
c +Q2.
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Figure 5: The charm structure function (Fcc
2 ) obtained [6] atQ2 = 20GeV 2 with respect to the input gluon

distribution NLO-GRV parametermization [9] (Solid line according to the expanding pointα = 0 and Dash-
Dot line according to the expanding pointα = 0.8) compared with DL fit[17-19] (Dot line), color dipole
model [20] (Dash line) and H1 data [13] (square) that accompanied with total errors at the renormalization
scaleµ2 = 4m2

c +Q2.
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Figure 6: The charm structure function (Fcc
2 ) obtained [6] atQ2 = 20GeV 2 with respect to the input gluon

distribution Block fit [16] (Solid line according to the expanding pointα = 0 and Dash-Dot line according
to the expanding pointα = 0.8) compared with DL fit[17-19] (Dot line), color dipole model[20] (Dash line)
and H1 data [13] (square) that accompanied with total errorsat the renormalization scaleµ2 = 4m2

c +Q2.
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