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TheAlpha Magnetic Spectromet@hMS) space experiment is devoted to direct measurements of
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The AMS-02 tracking device, tout couffiracker, consists of nine planes of micro-strip silicon
sensors giving a total active area of 6.4 niThe Tracker is composed by 2264 double-sided
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nearly 200,000 read-out channels. In this proceeding, wiewethe Tracker performances and
status after the first 500 days of data taking in space.
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1. Introduction

The main physics objectives of tHeMS project are (1) to search for primordial antimatter
particles such as antihelium, (2) to search for dark matgigbe signals through their annihilation
products &, p ory-rays, and (3) to search for exotic particles such as sttarsgg4) to provide
high accuracy measurements of CR spectra and chemical sitiopoup to Z=26. A first ver-
sion of the experimentAMS-01, operated successfully in a 10-day shuttle mission {$I)Sn
June 1998 [1]. Th&MS-01 mission provided results on CR protons, helium, elestrpositrons,
antiprotons, antihelium search, light nuclei and lightéges [1, 2, 3, 4]. The second generation
detectorAMS-02, is a large acceptance detector that has been launchiedhei Space Shuttle
STS-134 flight on May 18 2011 and installed on board the ISS on May' ?®D11.

The AMS-02 tracker provides positions measurements ofrtigniging particles in a 0.14 T mag-
netic field, allowing the determination of their rigidity ésign of the charge. Multiple measure-
ments of the specific energy loss of the charged particlejditian, allow the determination of the
magnitude of the particle charge.

AMS-02 is currently downlinking data at a rate ©f50 million triggers per day (with an average
bandwidth of~ 10 Mbps) and will be active during all the ISS lifetime.

2. The spectrometer

Figure 1: Schematic view of th&MS-02 spectrometer.

The AMS-02 detector is a state of the art particle physics deted&signed to work in space,
that has been optimised to cope with rare signals and largegbaunds. As shown in Fig.1, it
consists of:

e A 20-layer Transition Radiation Detector (TRD) to discnivaie electrons and positrons from
protons with a rejection factor of 8- 10° from 1.5 to 300 GeV,

e Four layers of plastic scintillators that provide preadisidime-Of-Flight (TOF) measure-
ments with a precision of 160 ps 63/ ~ 4%) and dE/dx loss measurements;
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e A permanent magnet providing an almost uniform field of 0.14 T

¢ Nine layers of siliconTracker with a total active area of 6.4 mwhich provide a proton
rigidity measurement (R=pc/Ze, the particle momentumddidi by the particle charge) with
a resolution of 25% at 500 GV [5] and charge discriminatiomaélei up to Z=26 (Fe) [6];

e Plastic scintillator anti-coincidence counters (ACClirag as Veto, which allow to reject
particles entering the magnet bore laterally;

¢ A Ring Imaging Cherenkov (RICH) detector, which permitsieasurement of the particles
velocity with 0.1% resolution and provides charge measergnwith discrimination power
above Z=26;

e A 3D imaging sampling calorimeter (ECAL) made of 16.4 &f lead and scintillating fibers,
which allows accurate energy measurement/foays, electrons and positrons, with a rejec-
tion factor, to the large hadrons background, at the lev&Dbin the range between 1.5 GeV
and 1 TeV,

The programmed observation timg {0yr), the large geometrical acceptaneeQ(5 n? sr), the
wide rigidity range,~0.2GV - 2TV (4 TV) for Z=1 (Z=2) particles, and the excelledentifica-
tion capabilities 0iAMS-02 represent a significant improvement for the flux deteatnoms of the
rare CR components and the antimatter search.

The AMS-02 spectrometer operates on the ISS at an altitude of 40@&enfrom backgrounds due
to the interactions between cosmic rays and the atmosphbkegpower consumption of the whole
detector is~ 2 kW, continuously provided by solar panels of the ISS.

3. The AMS-02 Silicon Tracker

TheAMS-01 Silicon Tracker [1] was the first application in spacehaf high-precision silicon
technology developed for position measurements in aateleexperiments. The high modularity,
low voltage bias levels needed (O(100V)), and gas-freeatioer of a solid-state device are well
suited for operation in space. The major challenges are totaiia the required mechanical preci-
sion and low-noise performance in the large-scale apicah space. The AMS-01 test flight in
1998, with its silicon tracking device, demonstrated tHausiness of the AMSracker design.
TheTracker is composed of 2264 double-sided silicon micro-strip seswith an area of 7241 mn?
and thickness of 30@m. These sensors are arranged into 192 independent ueitadtters as-
sembled in nine almost circular layers  m diameter) as schematically shown in Fig.1. Seven
layers are placed inside the magnet bore on four supporeglarhile two external layers are in-
stalled on both sides of the spectrometer, above the TRRmyahd between RICH and ECAL
respectively, to maximize the level arm @ m) and allow a Maximum Detectable Rigidity (MDR)
of ~ 2TV (~ 4 TV) for Z=1 (Z=2) particles.

The device has been designed to survive and operate in aevigetature range between 22hd
40 C. All the support planes are made of an aluminum honeycombtsate enclosed within thin
carbon fiber skins. The total thickness of one internal plankiding two silicon layers and one
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support plane is about 1%pand has been specifically optimised to minimize the matbéridget
inside the tracking path.

On the opposite sides of each silicon sensor, p-type (jomcand i -type (ohmic) strips are im-
planted, on a n-type substrate, along orthogonal direstigith implantation (readout) pitches of
27.5 (110)um and 104 (208um, respectively. The junction side provides a measurenfetfieo
bending coordinate (Y) in the spectrometer. Running albedadder the p-type strips are brought
to the ladder end, where a front-end hybrid provides the \m#tage and holds the readout chips.
The ohmic side strips, providing the measurement of thebeding coordinate (X), are routed
to the ladder end by means of a kapton cable which distritgiggmls of alternating sensors to the
same readout channel. The ladder design and its compomergkedched in Fig. 2.

A detailed description of the ladders, as well as resultsHferposition resolution can be found in
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Figure2: The components of AMS-02 silicon tracker ladder.

[5]. Fig. 3 shows the on-ground measured [9] Tracker pasitasolution as a function of projected
impact angle.

The 640(384) readout strips from the p(n) sides of each laaide AC-coupled to a 64 channel

low-noise, high dynamic range readout chMA_hdr 9a via 700 pF capacitors. Each channel has
a leakage current at the level of nA resulting in a total of fev per ladder. The analog signals
of each hybrid pair, for p and n side, are transferred to akeraData Reduction (TDR) board
which is equipped with three 12-bit ADCs, Field ProgramreaBhte Arrays (FPGAS) and Digital
Signal Processors (DSPs) for data reduction. The ADC indtion on the readout strips include
a pedestal, a common noise, a single-strip noise and anug¥esignal. The mean and root mean
square (RMS) of the pedestal are determined in a calibratiomt the beginning of each scientific
run. A valid signal is defined by a threshold applied to thenaigo-noise ratio for each readout
strip after pedestal and common noise subtraction. Theenmefers to the RMS value obtained in
the calibration run.
Due to the limited bandwidth, signals collected by all subdtors have to be processed on board.
Tracker analog signals of the front-end electronics aregssed by TDR boards that digitize them,
apply calibration data, subtract pedestal and the commde nsearch for clusters, and perform
online zero-suppressian
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Figure 3: The position resolution in the X (n-side strips, non-begdlend Y (p-side strips, bending) coor-
dinates as a function of the projected andlg,and 6,;, measured with cosmic-ray muon data on ground.
Proton test beam results [5] are also shown.

4. Tracker Status and Operation in Space

Since its activation on May 192011, theAMS-02 detector is working nominally onboard the
ISS and no crucial issues were noticed. Tnacker performance and its functionality are con-
tinuously monitored at thPayload Operation Control CentdPOCC) located at CERN (Geneva,
CH).
Calibration runs are performed every 46 minutes, when tisepi&ses above the equator, measur-
ing pedestal and noise level of each channel and assignitagus ®it to each in order to avoid the
use of noisy or dead strips in the science data analysis.

4.1 Tracker cooling

Detector operation in space requires an active coolingesysto either remove the heat pro-
duced, mainly, by the front-end electronics, and also tg@kee tracker temperature stable. The
Tracker Thermal Control System (TTCS) has the aim to keepetmperature of the inner tracker
under control. It consist of a pumped g@op designed to maximize the exchange of the heat,
coming from theTracker electronics, taking advantage of the latency heat needdtidevapora-
tion of the fluid. The fluid loop is connected to a pair of corglns where, by means of a radiator
facing the deep space, the gaseous @&diquified. A schematic of the whole system is presented
in Fig.4.

Temperatures are measured at different points of the detbgtDallas sensors. Thanks to such
a cooling system the temperatures of the various parts ofiehector show a remarkably stable
temperature (oscillations withix 1° C), as shown in Fig.5.

The temperature stability is needed to achieve and refleutsediately into the performances
stability of the tracking device. Th&acker calibration response, in terms of pedestal values and
noise levels, has been found to be, in facts, very stablamie.tiThe stability of such a kind of
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Figure 4. Schematic view of the Tracker Thermal Control System (TT@)umped CQ loop is used to
keep theTracker temperature stable removing the heat mainly produced bfydhé&end electronics.
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Figure5: Temperatures of th&acker (red, dotted line) and of the various parts of the TTCS sygtgeen,
yellow, black and violet filled lines) as a function of timer fa period of about six months of continuous
operations in space. Even with~a1l(® C temperature variation of the G@njected into the pump (green
filled line), the temperature of thEacker is kept stable within- 1° C.

basic operational parameters, guarantees the stabiltgriims of tracking efficiency and position
measurement performance.

4.2 Alignment and time stability

In Figure 6, the time dependence of the external trackereglgositions is shown in the two
uppermost panels: it is clearly related to the temperatuaeignt across the AMS mechanical
structure (third panel). The time dependence offitangle between the vector to sun position and
the orbital plane is also reported as a reference of theammviental conditions.

Two independent dynamic procedures of alignment have beeglaped in order to take into ac-
count thermal movements and correct for time dependendiég alignment was based on the
minimization of the proton and helium track residuals in¢lgernal planes, and independent cross
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checks were performed using the energy measurement in tAd EXbe stability in the bending
coordinate (Y) at the first layer after the alignment is régain Fig.7, no time dependent struc-
ture are visible and a dispersion at the3 um level is reached. In Fig.8, the E/R distribution for
positron and electrons are consistent with @r) shift after applying either of the two alignment
proceduresPG and CIEMAT, the expected discrepancy fora25 um relative shift between the
external layers is shown as a reference.
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Figure6: First (second) panel: shifts of the L1 (L9), with respectoominal position in the bending (Y) and
not bending (X) coordinates, as a function of time. Thirdgdatemperature differences between opposite
sides of the main AMS structure, as a function of time. Fopethel: angle) between the vector from the
sun and the orbital plane, as a function of time.
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Figure7: Layer 1Y coordinate stability as a function of time aftegalinent (top). No time dependence is
observed at the- 3 um level, as derived from a gaussian fit to the stability disttion (bottom panel).
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Figure 8: Check of the alignment with positrons and electrons usieggdBAL energy over rigidity ratio.
The two independent developed alignmdtB@ndCIEMAT) show the same result, i.e. the E/R value is the
same for positive and negative particles (top left and Jig8hanging the Y alignment of the two external
layers, by at 25um shift, the E/R distributions for positive and negativetigées significantly diversify
(bottom left and right).

4.3 Single Event Effect and operational issues

In the space environment the estimated total dose for atdetldee AMS is at the level of
~ 1 krad per year. This doesn’t constitute at all a problem imseof radiation damage for the
silicon detectors. The only issues, related to radiatioa,ceming from the SEE (Single Event
Effect). In fact, the ionization energy loss experiencedh®y charged particles passing through
the readout electronics may create conductive paths itis@boards or corrupt some of the DSP
memories. For the first type of issue a passive solution has bleosen: to avoid short circuits all
the power supplies are current protected. To cope with the BSmory corruptions, instead, an
active solution was implemented. The DSP memory is pratewith a Cyclic Redundant Check
(CRC) that is monitored every 23 minutes. As predicted omugdobefore the launch and then
confirmed once in space, tRMS electronics is experiencing a rate-ofl board failure per day.
Most of the times, however, the corruption affects unusechorg areas, with no resulting effect
on the data taking. As shown in Fig.9 (left) the DSP memoryuwgiion is equally distributed over
all the various detectors, i.e. there arewmeaknodes, and (right) the failure rate is constant as
function of time, i.e. there’s no degradation of the DSP meeso
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Figure 9: Left: distribution of the DSP memory failures, after 500 daf operation in space, as function
of the microprocessor address in the DAQ chain. The cowunptare equally distributed all over the various
detectors. Naveaknodes have been found. Right: failure rate as a functiomad tiAfter almost 2 years in
space no degradation is observed.

5. Conclusions

AMS-02 is collecting data since 2011, May",%t a steady rate of 50 million triggers per
day. All the sub-detectors and the data acquisition systemvarking nominally. Thélracker is
exhibiting the expected behaviour with high stability oflpstal and noise levels. Furthermore, it
has been observed a high ladder uniformity in terms of effigigesponse to CR particles.

The Tracker can reach a rigidity resolution of 10 % at 10 GV and has a MDR of about 2TV
(4TV) for Z=1 (Z=2) particles.

After more than 500 days in space, no major problems affatiedracker operation, with less of
1% of degraded channels, over the whole data taking period.
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