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We have performed an analysis of the correlation space of narrow- and broad-line Seyfert 1 galax-

ies, in order to identify main drivers of their intriguing emission-line and continuum properties.

In particular, we paid attention to the density of the narrow-line region. A principal component

analysis then shows that the density is a key ingredient of the Eigenvector 1 space of our sample,

as important as the Eddington ratio. Our finding implies a close link between the properties of the

central engine and the host galaxy.

Nuclei of Seyfert galaxies and QSOs – central engine and conditions of star formation
November 6-8, 2012
Max-Planck-Insitut für Radioastronomie (MPIfR), Bonn, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
S
e
y
f
e
r
t
 
2
0
1
2
)
0
1
1

Eigenvector space of NLS1 galaxies Dawei Xu

1. Introduction

Narrow-line Seyfert 1 (NLS1) galaxies are a population of active galactic nuclei (AGN) which
are characterized by narrow Balmer lines from the broad-line region (BLR), strong Fe II emission
and weak [O III] emission. They stand out in the AGN correlation space byclustering at one
extreme end (e.g., [1], [2]). They therefore provide us with constraintson models of black hole
growth and AGN evolution (see [9] for a review).

Principal component analysis (PCA) is a useful tool to uncover the strongest correlations
among a set of object properties. While not without shortcomings (see, e.g., [3] for a critical
discussion), it provides some information on the underlying physical drivers behind the observed
correlations. We have applied it to a sample of nearby NLS1 and broad-lineSeyfert 1 (BLS1)
galaxies, with the aim of uncovering the major drivers of their emission-line and continuum prop-
erties.

The galaxy sample was first introduced by [11], and consists of∼100 narrow- and broad-line
AGN which have Sloan Digital Sky Survey (SDSS) spectra available. Our main focus was on the
NLS1 galaxies, while the BLS1 galaxies serve as a comparison sample. The broad-line widths of
our sample range between FWHM(Hβ ) ∼ 1070 km s−1 and 6200 km s−1. We have set the “dividing
line” between NLS1 and BLS1 galaxies at 2000 km s−1, following historical convention (e.g., [5]),
but any other FWHM value can in principle be imposed on our sample.

This work (see also [12]) is the fourth in a sequence, in a study devoted toNLS1 galaxies. The
first paper reported on the difference in the density of the narrow-line region (NLR) of NLS1 and
BLS1 galaxies ([11]), the second focussed on the locus of NLS1 galaxies on the M –σ plane ([7]),
and the third addressed a subgroup of NLS1 galaxies which show extremeemission-line outflows
([9]).

2. Results

Our main results can be summarized as follows:

• As previously shown for other NLS1 samples (e.g., [6]), and applying thecommon scaling
relations (e.g., review by [10]), we confirm that NLS1 galaxies, as a class, are characterized
by smaller black hole masses, and higher Eddington ratios than their BLS1 counterparts.
Figure 1 shows the distribution of black hole masses and Eddington ratios of our sample.

• We have run a PCA, based on the following parameters which were derived for our sample:
the SDSSi band magnitude, the FWHM of the broad component of Hβ , the ratio of total
[O III] λ5007 over total Hβ emission, the ratio of Fe IIλ4570 over total Hβ emission, the
FWHM of [S II], the velocity shift of the core of [O III] (with respect to [S II]), and the
intensity ratio of [S II]λ6716/λ6731. The latter directly provides a measurement of the NLR
density. Each parameter provides independent information. Based on thisapproach, we have
found, that the NLR density is a key parameter of the Eigenvector 1 of our sample. It turns
out to be as important as the Eddington ratio (Figure 2).

• Eigenvector 2 is highly related to luminosity. NLS1 and BLS1 galaxies are well distinguished
in EV1 space, while they are merged in EV2 space.
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Figure 1: Distribution of black hole masses and Eddington ratios (solid line: NLS1 galaxies, dashed line:
BLS1 galaxies).

• Several NLS1 galaxies with extreme blueshifts of [OIII] (so called “blue outliers”) fall into
the corner of high Eddington ratio and high luminosity in the EV1–EV2 diagram (Figure 3).
They share this location with broad absorption line quasars (e.g., [2]). This fact might hint
at possible links between these two subclasses of AGN, which both show observational evi-
dence for the occurence of strong outflows, albeit at different scales.

3. Discussion and implications

We have shown that the NLR density is a significant parameter in EV1 space,and, in fact,as
important as the Eddington ratio. This finding establishes the density as a key ingredient, when
aiming at understanding the multi-wavelength correlation properties of NLS1 galaxies.

Adding density to EV1 space was of particular importance, because the NLRdensity is rep-
resentative of the interstellar medium of the host galaxy. Our findings therefore imply a close link
between the central engine properties and the host galaxies.
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Figure 2: Correlations of EV1 with the NLR densityne and the Eddington ratioL/LEdd. (filled circles:
NLS1 galaxies, open circles: BLS1 galaxies).

Figure 3: Distribution of NLS1 galaxies (filled circles) and BLS1 galaxies (open circles) of our sample in
the EV1-EV2 space. [O III] blue outliers are marked with an extra open square.

Such a link is potentially expected, on the one hand, when winds or outflows are at work, or,
on the other hand, might also be caused by bar-driven inflows.

Winds and outflows are particularly strong in NLS1 galaxies (e.g.,[9]), andmight be linked
to the high Eddington ratios in NLS1 galaxies. Whether accretion-driven outflows may propagate
up into the NLR is currently being explored. We also note that galaxy merger simulations predict
strong outflows, but so far, we do not see a strong excess of mergersamong our NLS1 galaxies,
when compared to BLS1 galaxies (but note that few of the NLS1 galaxies have high-quality host
images).
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Finally, we note that recent studies have shown that NLS1 galaxies have ahigherbar fraction
than BLS1 galaxies (e.g., [4]). Since bars are efficient in transporting gas inward, they might
supply the NLR with (low-density) gas, thus providing another possible explanation for the NLR
properties of NLS1 galaxies. Bar-driven instabilities can also lead to pseudo-bulges by internal
secular processes; and several lines of evidence have been presented in recent years, that secular
processes indeed play a role in NLS1 galaxies.

In summary, NLS1 galaxies are important targets for our understanding ofblack hole growth
and evolution, and of issues of feeding and feedback.

A number of future follow-up studies suggest themselves, including: (1) Selection of larger
NLS1 samples from the latest SDSS data releases which, in particular, haveall their classical
emission linesdetected. This ensures that emission-line diagnostics can be performed thesame way
as it was done for our current sample (like, for instance, using the [S II]λ6716/λ6731 emission-line
ratio for density diagnostics). (2) Obtaining high-quality host images of the galaxies of our sample,
in order to measure their host type, and host properties, and ultimately add host properties to the
correlation analyses. (3) Nearest-neighbor analyses of larger NLS1samples, in order to investigate
if NLS1 and BLS1 galaxies reside in similar large-scale environments.
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