
Nuclear Physics with Chiral Effective Field Theory:
State of the Art and Open Challenges

Evgeny Epelbaum∗†

Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
E-mail: evgeny.epelbaum@rub.de

Understanding the properties of atomic nuclei and nuclear dynamics from QCD remains a major
challenge. Complementary to first attempts along these lines based on lattice QCD, an effective
field theory approach has been developed in the past two decades and applied to a variety of
nuclear bound states and reactions. I outline the foundations of this method, discuss selected
applications and address some open challenges in this field.

Xth Quark Confinement and the Hadron Spectrum,
October 8-12, 2012
TUM Campus Garching, Munich, Germany

∗Speaker.
†It is a great pleasure to thank all my collaborators for sharing their insights into the discussed topics and the

organizers of Confinement X for making this exciting conference possible. I also thank Ashot Gasparyan, Jambul
Gegelia, Hermann Krebs, Timo Lähde, Deen Lee and Ulf-G. Meißner for reading the manuscript and making many
valuable suggestions. Finally, I acknowledge financial support by the European Research Council (ERC-2010-StG
259218 NuclearEFT) and the Deutsche Forschungsgemeinschaft (SFB/TR 16).

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:evgeny.epelbaum@rub.de


Nuclear Physics with Chiral Effective Field Theory Evgeny Epelbaum

1. Introduction

The past decade has witnessed a renewed interest in the nuclear force problem. In addition
to new experimental facilities, this is to a large extent related to exciting theoretical developments
in this field. On the one hand, rapidly increasing computational resources and improvements in
algorithms make some nuclear physics observables amenable to numerical simulations in lattice
QCD [1]. Complementary to this research direction, considerable progress has been achieved
towards a quantitative description of nuclear forces and dynamics within the framework of effective
field theory (EFT) starting from the pioneering work of Weinberg [2]. The essential idea behind
this method is to systematically exploit the scale separation in a problem of interest. There are
several scales that play an important role in nuclear physics. The lowest one is given by the typical
binding energies of the order of a few MeV per nucleon. This small scale manifests itself in
the large values of the nucleon-nucleon (NN) S-wave scattering lengths, a1S0 ∼ (8 MeV)−1 and
a3S1 ∼ (40 MeV)−1, and signals the breakdown of perturbation theory for two- and many-nucleon
observables at low energy. It is well separated from the next-higher scale relevant for the NN
system, namely the pion mass Mπ . Exploiting this scale separation allows one to set up the so-called
pionless EFT. In this approach, (non-relativistic) nucleons are treated as the only active degrees of
freedom (DOFs) and the shallow scale associated with the nuclear binding is generated dynamically
via resumming the lowest-order NN interactions. Pionless EFT is justified for momenta well below
Mπ which is sufficient for e.g. many reactions of astrophysical interest. Similar theoretical methods
are successfully applied to study Efimov physics and universality in few-body systems close to the
unitary limit, cold atoms and the properties of halo-nuclei, see e.g. [3] for a recent review article.

To increase the applicability range of the theory beyond the near-threshold region one needs
to include pions as explicit DOFs. The resulting chiral EFT (χEFT) relies on the approximate
spontaneously broken chiral symmetry of QCD. This symmetry/symmetry-breaking pattern of
QCD strongly constrains the interactions of pions being identified with the corresponding pseudo-
Goldstone bosons. It allows one to calculate pion and pion-nucleon low-energy observables within
a systematic perturbative expansion in Q/Λχ . Here, Q∼Mπ refers to the soft scale associated with
external momenta while Λχ ∼Mρ GeV stands for the (hard) chiral-symmetry breaking scale that
governs the values of renormalized low-energy constants (LECs) in the effective Lagrangian. We
refer the reader to the review article [4] and references therein for more details on chiral perturba-
tion theory (ChPT) and an overview of recent trends and developments in that field.

In the past decades, χEFT has been extensively applied to the nuclear force problem, see
[5] for an introduction and [6, 7] for recent review articles. In this framework, nucleons interact
by exchanging a single or multiple pions. In the chiral limit of vanishing quark masses one is
expanding about, these interactions have an infinitely long range. The long-range tail of the nuclear
force controls the energy dependence of the scattering amplitude. It is strongly constrained by the
chiral symmetry of QCD and can be rigorously derived in ChPT, see Fig. 1. On the other hand,
the short-range part of the range well below M−1

π is driven by physics that cannot be resolved
explicitly in reactions with typical nucleon momenta of O(Mπ). Such short-range forces can be
naturally parameterized by contact interactions with an increasing number of derivatives.

In this contribution I review the current status of χEFT for nuclear forces and few-nuclear sys-
tems, discuss some recent and ongoing developments and address open questions and challenges
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Figure 1: Chiral expansion of the isovector-tensor (left panel) and isoscalar central (right panel) long-
range two-nucleon potentials. The shaded bands show an estimated size of (scheme-dependent) short-range
contributions which are represented by contact interactions, see Ref. [5] for more details.

in this field. The paper is organized as follows. Section 2 is devoted to nuclear forces and nuclear
chiral dynamics. A few recent applications to few-nucleon reactions with external probes are dis-
cussed in section 3. Finally, section 4 overviews progress towards understanding the properties of
light nuclei via lattice simulations of χEFT.

2. Chiral effective field theory for nuclear forces and light nuclei

Assuming that LECs accompanying few-nucleon contact interactions scale according to naive
dimensional analysis, the chiral power counting provides a natural qualitative explanation of the
(always assumed) dominance of the two-body interactions with 〈V2N〉 � 〈V3N〉 � 〈V4N〉 � . . ..
More precisely, the chiral expansion of nuclear forces has the form [2]

V2N = V (0)
2N +V (2)

2N +V (3)
2N +V (4)

2N + . . . ,

V3N = V (3)
3N +V (4)

3N + . . . ,

V4N = V (4)
4N + . . . , (2.1)

where the superscripts denote the associated powers of the soft scale Q.

2.1 The two-nucleon system

Starting from the pioneering work by Weinberg [2] and the first quantitative calculation of
Ref. [8], the NN force has been extensively studied in the framework of χEFT. Within the heavy-
baryon formulation, calculations have been pushed to leading two-loop order corresponding to
next-to-next-to-next-to-leading order (N3LO) or Q4 in the chiral expansion. At this order, the long-
range part of the NN force is governed by exchange of up to three pions. It is strongly constrained
by the chiral symmetry of QCD and experimental data on pion-nucleon scattering. The short-range
part depends on 26 LECs accompanying 24 isospin-invariant and 2 isospin-breaking NN contact
interactions which are tuned to the low-energy NN data [9, 10]. It was found to be necessary and
sufficient to go to N3LO in order to accurately describe NN phase shifts up to energies of the order
of Elab ∼ 200 MeV.
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Figure 2: Neutron-proton phase shifts and mixing angles calculated using N3LO χEFT potentials of
Ref. [10] (shaded bands) and Ref. [9] (dashed lines) in comparison with the Nijmegen [11] (filled circles)
and SAID [12] (open triangles) partial wave analyses. Also shown are leading-order cutoff-independent
results of Ref. [13] (dotted lines).

The most interesting part of the novel chiral NN force is two-pion (2π-) exchange which con-
stitutes the second-longest contribution to the NN potential and, therefore, has significant impact
on the energy dependence of the scattering amplitude. Indeed, its evidence has been confirmed
in the partial wave analysis of the Nijmegen group [14], see also [15]. In agreement with expec-
tations based on phenomenological studies, one observes a very strong attractive isoscalar central
potential. This by far the strongest 2π-exchange contribution emerges, however, only at next-to-
next-to-leading order (N2LO) as a correction to the nominally dominant 2π-exchange potential at
next-to-leading order (NLO). This peculiar pattern is well understood and can be traced back to
the intermediate excitation of the ∆(1232) isobar at one of the nucleons which gives rise to a very
strong attractive isoscalar central NN force [8, 16, 17]. In the standard formulation of χEFT based
on pions and nucleons as the only explicit DOFs, all effects of the ∆ (and heavier resonances as
well as heavy mesons) are hidden in the (renormalized) values of (some of the) LECs starting from
the subleading effective Lagrangian. As a consequence, the phenomenologically important 2π-
exchange mechanism driven by the ∆ excitation appears only at subleading order from diagrams
involving one insertion of the subleading pion-nucleon vertex. The values of the corresponding
LECs c3,4 are, to a large extent, driven by the ∆ isobar [18] and turn out to be rather large in magni-
tude. It is possible to improve the convergence of the EFT expansion by treating the ∆-isobar as an
explicit DOF in the effective Lagrangian and counting m∆−mN ∼Mπ = O(Q) [19], see also [20]
for an alternative counting scheme. In such a ∆-full theory, the major part of the strong attractive
2π-exchange potential is shifted from N2LO to NLO, while the LECs c3,4 take more natural values
[17].

Having developed χEFT for the NN system, it is natural to address the question of the light
quark-mass- (mq-) dependence of the nuclear force and observables such as e.g. the deuteron bind-
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Figure 3: Quark mass dependence of the deuteron binding energy (left panel), and inverse 1S0/3S1 neutron-
proton scattering lengths (middle/right pannel). Shaded bands correspond to the N2LO analysis of Ref. [28]
as explained in the text. Also shown are leading-order cutoff-independent results of Refs. [13, 29].

ing energy E2H and S-wave scattering lengths a1S0, a3S1. This is not only of considerable interest
for ongoing and upcoming lattice-QCD calculations, but also for searches of a possible spatial
and temporal variation of fundamental constants in nature [21] and questions related to anthropic
considerations, see also section 4. The mq-dependence of NN S-wave phase shifts and E2H was
analyzed at NLO in Ref. [22], see also Ref. [23] for a calculation using the power counting scheme
of Ref. [24], which relies on a perturbative treatment of 1π-exchange, and more recent related
studies [25, 26]. The common problem in all these calculations is the lack of knowledge about
the mq-dependence of NN contact interactions. Estimating the size of the corresponding LECs by
means of dimensional analysis leads to a very large uncertainty for chiral extrapolations of E2H,
a1S0 and a3S1. In addition, there are indications that the chiral expansion of the short-range part of
the NN force might converge slowly in the heavy-baryon approach due to the appearance of the
momentum scale

√
MπmN associated with radiative pions [27]. To overcome these difficulties, the

recent N2LO analysis of Ref. [28] made use of the fact that the LECs accompanying NN contact
interactions are saturated by heavy-meson exchanges [30, 31]. Using a unitarized version of ChPT
in combination with lattice-QCD results to describe the mq-dependence of meson resonances sat-
urating these LECs, the mq-dependence of NN observables was analyzed at N2LO without relying
on the chiral expansion of the short-range NN force, see Fig. 3. This allowed us to considerably
reduce the theoretical uncertainty as compared to the earlier calculations. Extending these results to
light nuclei and comparing observed and calculated primordial deuterium and helium abundances
yields a stringent limit on a variation of the light quark mass, δmq/mq = 0.2± 0.04, see also the
related earlier calculation in Ref. [21]. While the calculated chiral extrapolations for E2H are con-
sistent with our earlier analysis in [22] as well as with the recent phenomenological calculation of
Ref. [32], unquenched lattice-QCD results of the NPLQCD Collaboration [33] seem to indicate an
opposite trend with a stronger-bound deuteron at large values of mq. It is not clear at this stage
whether there is any contradiction since the lattice results are so far only available at rather large
pion masses with Mπ > 353.7 MeV, see [1]. Using the available lattice data in conjunction with the
(presumably unrealistic) assumptions of (i) perturbativeness of the 1π-exchange potential in the
3S1-3D1 channel and (ii) validity of the chiral expansion for NN scattering at such large values of
Mπ leads to a qualitatively different dependence of E2H on mq [25, 26].
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Complementary to the studies based entirely on χEFT, there are interesting recent develop-
ments towards merging χEFT with dispersion relations [34, 35]. The main idea of this approach is
to take advantage of the known analytic structure of the NN scattering amplitude T (s), with s being
the invariant mass of the NN system, which can be reconstructed from the so-called generalized
potential U(s) by means of the (once subtracted) dispersion relation

T (s) =U(s)+
∫

∞

4m2
N

ds′

π

s−µ2
M

s′−µ2
M

T (s)ρ(s′)T ∗(s′)
s′− s− iε

, (2.2)

where ρ(s) is the phase-space function (see Ref. [35] for the exact definition). Further, µM denotes
the matching point for which T (µM) =U(µM). The generalized potential does not have the right-
hand elastic unitarity cut but still features left-hand cuts associated with t-channel pion exchanges
and short-range mechanisms. The discontinuity across the first left-hand cut is unambiguously
given by the 1π-exchange potential. The discontinuity across the left-hand cut in the range from
s = 4m2

N−4M2
π to s = 4m2

N−9M2
π is calculated in Ref. [35] at N2LO using a manifestly covariant

version of ChPT. This relies on the assumption of the validity of ChPT for the NN amplitude in
some region below threshold. Extrapolating the contributions from more distant left-hand cuts in
U(s) to the physical region by means of a suitable conformal mapping [36, 37] or, more precisely,
the Taylor expansion in a conformal variable ξ (s), we solved in Ref. [35] the partial-wave pro-
jected nonlinear equation (2.2) for T (s) using the N/D method. Fixing the constants entering the
expansion in ξ (s) of the short-range part of U(s) in S- and P-waves from NN phase shifts up to
the energy of Elab = 100 MeV, the energy dependence could be reasonably well described up to
Elab = 250 MeV. We also observed good convergence of the chiral expansion for U(s) when going
from the order Q0 to Q3 (which supports the assumption about perturbativeness of the amplitude
below threshold) and clear evidence for the 1π- and 2π-exchange cuts in NN phase shifts.

2.2 The three-nucleon force

Three-nucleon forces (3NF) represent an old but still very current topic in nuclear physics, see
Refs. [38, 39] for recent review articles. While effects of 3NFs in low-energy nuclear observables
are expected to be considerably smaller than the ones of the NN force, see Eq. (2.1), their inclusion
is necessary at the level of accuracy of today’s few- and many-body ab-initio calculations, see
[38, 39] and references therein. In spite of decades of effort, the structure of the 3NF is not properly
described by the available phenomenological models [38]. Given the very rich spin-momentum
structure of the 3NF, scarcer database for nucleon-deuteron (Nd) scattering compared to the NN
system and relatively high computational cost of solving the Faddeev equations, further progress
in this fields requires substantial input from theory. This provides a strong motivation to study the
3NF within χEFT.

The first nonvanishing contributions to the 3NF emerge at N2LO from tree-level diagrams in
the left panel of Fig. 4 corresponding to the 2π-exchange, 1π-contact and pure contact graphs (a),
(d) and (f), respectively [40, 41]. The shorter-range terms emerging from diagrams (d) and (f) de-
pend on one unknown LEC each which can be determined from suitable few-nucleon observables,
see e.g. [6, 5, 38, 39] and references therein. The long-range contribution (a) is driven by the sub-
leading ππNN vertices proportional to the LECs c1,3,4 which are known from πN scattering. The
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MeV. Cyan and red shaded bands correspond to NLO and N2LO, respectively.

resulting 3NF at N2LO has been extensively explored in three- and four-nucleon scattering calcu-
lations, see [38] and references therein. One finds a good description of low-energy Nd scattering
observables, see Fig. 4 for representative examples, except for the well-known, long-standing puz-
zles such as the vector analyzing power in elastic Nd scattering (the so-called Ay-puzzle) and the
cross section in the space-star breakup configuration, see Ref. [38] for more details. Promising
results for low-energy four-nucleon scattering observables based on the chiral 3NF, especially in
connection with the Ay-puzzle, are reported in Ref. [42]. While Nd scattering data at higher ener-
gies are also well described, the theoretical uncertainty increases rapidly reflecting a similar pattern
in the NN sector at this order in the chiral expansion. This is visualized in the right panel of Fig. 4.

Interesting results based on chiral nuclear forces were also obtained by various groups in
nuclear structure calculations showing, in particular, sensitivity to the individual terms of the N2LO
3NF, see [39] for a review. All these findings clearly underline the need to include corrections to
the 3NF beyond the leading terms at N2LO.

2.3 Open challenges and ongoing work

2.3.1 Renormalization of the NN scattering amplitude with non-perturbative pions

While the long-range part of the nuclear force obeys the standard chiral power counting, the
relative importance of the short-range operators and the closely related issue of renormalization
of the Lippmann-Schwinger (LS) equation are still under debate, see [43, 44, 45] and references
therein for a sample of different points of view. The main problem is due to the fact that itera-
tions of the truncated NN potential within the LS equation generate contributions to the amplitude
beyond the order one is working at. These higher-order terms generally involve ultraviolet (UV)
divergences which cannot be absorbed by counter terms (contact interactions) included in the trun-
cated potential so that one needs to employ a finite UV cutoff Λ of the order of a natural hard scale,
say Λ ∼ Λχ ∼Mρ [46]. All calculations described in the previous sections have been carried out
within such an approach. Notice that it is not legitimate to employ Λ�Mρ (even if the limit Λ→∞

7



Nuclear Physics with Chiral Effective Field Theory Evgeny Epelbaum

of the amplitude exists) unless all UV divergences appearing in the iterations of the LS equation
are subtracted [47], see Ref. [48] for an illustration. While subleading and higher-order corrections
to the potential do not have to be resummed in Weinberg’s power counting scheme [2] and can be
treated perturbatively, it is easy to see that already the LS equation for the LO NN potential

V (0)
2N =− g2

A
4F2

π

τ1 · τ2
~σ1 ·~q ~σ2 ·~q
~q 2 +M2

π

+CS +CT~σ1 ·~σ2, (2.3)

where ~σi (τ i) denote the Pauli spin (isospin) matrices of a nucleon i and ~q = ~p ′−~p the nucleon
momentum transfer, is not renormalizable (in the above-mentioned sense). In [13] we have shown
that this unpleasant feature is caused by the nonrelativistic expansion of the NN propagator adopted
in the LS equation. We have suggested a new framework based on the manifestly Lorentz invariant
effective Lagrangian. In this approach the LO amplitude is obtained by solving the integral equation
(first introduced in Ref. [49])

T (~p ′,~p)=V (0)
2N (~p ′,~p)− m2

N

2

∫ d3k
(2π)3

V (0)
2N (~p ′,~k)T (~k,~p)

(k2 +m2
N)(E−

√
k2 +m2

N + iε)
, (2.4)

where E =
√

p2 +m2
N denotes the center-of-mass energy of a single nucleon. Iterations of this

equation generate only logarithmic divergences which can be absorbed into a redefinition of CS

and CT , i.e. it is perturbatively renormalizable. Consequently, the UV cutoff Λ can be safely
removed by taking the limit Λ→ ∞. Partial wave projected equations corresponding to Eq. (2.4)
have unique solutions except for the 3P0 channel. The non-uniqueness of the solution in this partial
wave can be dealt with by resumming the corresponding counter term, see [13] for more details. We
further emphasize that the nucleon mass appearing in the integrand in Eq. (2.4) does not violate the
power counting after renormalization is carried out [13, 29]. We already applied this novel scheme
to NN scattering at LO. The resulting cutoff-independent phase shifts and mixing angles are shown
in Fig. 2. Given that the calculations are carried out at LO, the agreement with the Nijmegen PWA
is rather good.

Since we do not rely on the nonrelativistic expansion and do not attempt to integrate out the
momentum scale

√
MπmN , our new scheme can be straightforwardly applied to study the mq (Mπ )

dependence of nuclear observables. At LO this is entirely driven by the explicit Mπ -dependence
of the 1π-exchange potential in Eq. (2.3). Fig. 3 shows the predicted chiral extrapolations of E2H,
a−1

1S0 and a−1
3S1. It is comforting to see a good agreement with the N2LO calculations of Ref. [28]

based on the formulation with a finite cutoff, see section 2.1.
In the future, these calculations should be extended to higher orders by perturbatively including

corrections to the potential. Recent studies [50, 51] within the nonrelativistic framework indicate
that such a perturbative treatment of the 2π-exchange might be phenomenologically successful.

2.3.2 Three-nucleon force beyond N2LO

The first corrections to the 3NF emerge at N3LO from all possible one-loop diagrams of type
(a)-(e) in Fig. 4 constructed from solely the LO vertices. The resulting parameter-free expres-
sions can be found in Refs. [52, 53], see also Ref. [54]. An interesting feature of the N3LO 3NF
corrections is their rather rich isospin-spin-momentum structure emerging primarily from the ring

8
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topology (c) in Fig. 4. This is in contrast with the quite restricted operator structure of the N2LO
3NF. The new structures in the 3NF might have impact on Nd scattering observables and shed
light on the existing puzzles. Numerical implementation of the N3LO 3NF corrections requires
their partial wave decomposition (PWD) which is a nontrivial task. In Ref. [55], a new method
to perform the PWD of any type of the 3NF by carrying out five-dimensional angular integrations
numerically was introduced. The PWD of the N3LO 3NF using this new technique requires sub-
stantial computational resources and is in progress, see Ref. [56] for some first (but still incomplete)
results.

Meanwhile, one may ask whether the chiral expansion of the 3NF is already converged at
N3LO. Given the situation with the 2π-exchange NN potential, where the strongest contributions
driven by ∆ excitations appear at the subleading order (in that case N2LO), one may expect a sim-
ilar convergence pattern for the 3NF. This applies especially to new operator structures emerging
from the genuine loop topologies (b) and (c), whose chiral expansion starts at N3LO rather than
N2LO. At this order, the resulting contributions completely miss effects associated with intermedi-
ate ∆(1232) excitations. To clarify the situation it is, therefore, necessary to go to the next-higher
order N4LO which corresponds for connected 3N diagrams to the subleading one-loop order. First
steps along these lines were made recently in Ref. [57], where the chiral expansion of the longest-
range, 2π exchange 3NF topology was extended to N4LO. In the isospin and static limits, the 2π

exchange 3NF in momentum space has the form

V 2π
3N =

~σ1 ·~q1~σ3 ·~q3

[q2
1 +M2

π ] [q2
3 +M2

π ]

(
τ1 · τ3 A (q2)+ τ1× τ3 · τ2~q1×~q3 ·~σ2 B(q2)

)
+5 perm. . (2.5)

The quantities A (q2) and B(q2) are scalar functions whose explicit form is computed within the
chiral expansion. Notice that the leading nonvanishing contributions to A and B at N2LO are
governed by the LECs ci and already take into account effects of the ∆ isobar, see the discussion in
section 2.2. One may therefore expect a good convergence of the chiral expansion for these quan-
tities. At the N4LO (Q5) level, the functions A and B depend on certain combinations of LECs
from the order-Q2, Q3 and Q4 effective πN Lagrangian. Their values were determined in Ref. [57]
from πN scattering calculated within the same power counting scheme up to the subleading one-
loop order. One then indeed observes a good convergence of the chiral expansion for A and B,
see the left panel of Fig. 5, which is fully in line with the qualitative arguments given above.

The situation with the intermediate-range contributions emerging from the 2π - 1π and ring
diagrams (b) and (c) in Fig. 2.2 is completely different. Here, effects of the ∆-isobar start show-
ing up at N4LO leading to large corrections at this order [58]. It is more natural to address the
convergence of the chiral expansion for long-range 3N potentials in coordinate space. The general
structure of a local 3NF in coordinate space can be parameterized in terms of 22 scalar functions
Fi(r12,r23,r31) [58]

V3N =
22

∑
i=1

Gi(~σ1,~σ2,~σ3,τ1,τ2,τ3, r̂12, r̂23)Fi(r12,r23,r31)+5permutations, (2.6)

where r̂i j ≡~ri j/|~ri j| and~ri j =~ri−~r j denotes the position of nucleon i with respect to nucleon j.
The explicit form of the 22 linearly independent operators Gi can be found in Ref. [58]. The profile
functions Fi have dimension of energy and can be interpreted as the potential energy between
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Figure 5: Left panel: Chiral expansion of the functions A (q2) and B(q2) entering the 2π-exchange 3NF.
Right panel: Chiral expansion of the functions Fi(r) generated by the long- and intermediate-range 3NF
topologies up to N4LO. Dashed, dashed-dotted and solid lines correspond to F
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three static nucleons projected onto the corresponding operator. They receive contributions from
the long-range and intermediate-range 3NF topologies and are predicted (at long distances) by
ChPT. This is visualized in the right panel of Fig. 5, where we show the functions F14 and F15,
which accompany the operators G14 = τ2 · τ3 r̂12 ·~σ1 r̂12 ·~σ2 and G15 = τ1 · τ3 r̂13 ·~σ1 r̂13 ·~σ3, in
the equilateral triangle configuration with r12 = r23 = r31 = r. The Fourier transform of Eq. (2.5)
corresponding to the longest-range, 2π topology gives rise to 10 out of 22 functions Fi. They
strongly dominate over the intermediate-range contributions at distances r & 2 fm, so that the chiral
expansion of the resulting Fi’s shows good convergence. The function F15 in Fig. 5 may serve as a
representative example. On the other hand, those functions Fi which do not receive contributions
from 2π-diagrams such as e.g. F14 are dominated by the large N4LO corrections to the 2π-1π

and ring graphs. Notice that in agreement with the power counting, see Eq. (2.1), 3N potentials
are considerably weaker than the NN ones, cf. Fig. 1 and the right panel of Fig. 5. More work is
needed to clarify whether phenomenologically important effects associated with intermediate ∆-
excitations are already properly represented at N4LO. This can be naturally addressed within the
∆-full formulation of χEFT. Work along these lines is in progress. Last but not least, we emphasize
that subleading contributions to the 3N contact interactions (diagram (f) in Fig. 4), which also
appear at N4LO, are worked out in Ref. [59].

3. Precision few-nucleon physics: Recent examples

Parallel to the developments in the strong sector, there have been several recent applications
of χEFT to few-nucleon reactions with external probes. Here we briefly discuss a few examples.

The first, classical example deals with low-energy pion-deuteron scattering as a tool to extract
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Figure 6: Left panel: Combined constraints on ã+ and a− from data on πH and πd. Figure courtesy of
Vadim Baru. Right panel: sensitivity of a0 for 3He in units of 10−6/M2

π+ to the neutron multipole Eπ0n
0+ . The

vertical dashed line indicates the ChPT prediction for Eπ0n
0+ and the vertical dotted lines the estimated 5%

uncertainty. The shaded band gives an indication of the theoretical uncertainty, see [69] for more detail.

the πN isoscalar and isovector scattering lengths a+ and a−. Direct extractions of a+ from πN
scattering suffer from large uncertainties, so that the important source of experimental information
on these fundamental observables comes nowadays from pionic atoms. Applying an improved
Deser formula [60] to the experimentally measured shift and width of the 1s level of πH ε1s =

(−7.120±0.012) eV and Γ1s = (0.823±0.019) eV [61] yields constraints on the scattering lengths
shown in Fig. 6. Here, ã+ denotes a particular linear combination of a+ and isospin-violating terms
which is accessible in pionic atoms, see [63] for more details. The πH data alone do not fix even
the sign of ã+. On the other hand, further constraints can be obtained from the recently measured
level shift of pionic deuterium [62] πD, εD

1s = (2.356±0.031) eV provided one can reliably relate
this observable to πN scattering lengths. Such a theoretical analysis in the framework of χEFT was
recently accomplished in [63], see also references therein for earlier calculations. Notice that at this
level of accuracy, it was necessary to carefully study isospin-breaking effects. It is comforting to
see that the resulting constraints on ã+ and a− are consistent with those emerging from the πH
data. Moreover, combining πH and πD data leads to the best-available determination of ã+ and
a−.

Neutral pion photo- and electroproduction off light nuclei has also been extensively explored
in recent years, see Refs. [64, 65] and references therein for earlier studies. Here, one important
motivation is to test the ChPT prediction for the neutron amplitude, Eπ0n

0+ = 2.13 ·10−3/Mπ+ [66],

which appears to be counterintuitive given the ChPT value for the proton Eπ0 p
0+ =−1.16 ·10−3/Mπ+

[66, 67] (which has been confirmed experimentally). While the predicted value for Eπ0n
0+ was ver-

ified within 20% by an experiment at SAL using deuteron target [68], it is particularly promising
to study π0 production off 3He which is known to be a good neutron target for spin-dependent ob-
servables. Our recent theoretical calculation [69] at subleading one-loop order of χEFT confirms
these estimations. It is found that the threshold S-wave cross section for π0 photoproduction off
3He, a0 = (|~kγ |/|~qπ |)(dσ/dΩ)~qπ=0, is indeed sensitive to the elementary neutron multipole Eπ0n

0+ ,
see the right panel of Fig. 6. Moreover, the uncertainty associated with nuclear corrections appears
to be very small so that a reliable theoretical extraction of Eπ0n

0+ from a0 is possible. Using the
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above mentioned ChPT prediction for Eπ0n
0+ , the predicted value of the 3He S-wave multipole E0+

is roughly consistent with the value deduced from the old Saclay measurement of [70].
There is also considerable interest in electromagnetic few-nucleon reactions. In the single-

photon approximation, their theoretical description requires knowledge of the electromagnetic cur-
rent operator, which should be constructed consistently with the nuclear forces. The derivation of
the exchange currents in χEFT was first addressed in the seminal paper by Park et al., [71], who,
however, limited themselves to threshold kinematics. Recently, this work was extended by the
JLab-Pisa [72] and Bochum-Bonn groups [73] to derive the exchange currents at the one-loop level
for general kinematics suitable to study e.g. electron scattering off light nuclei at momentum trans-
fer of the order of∼Mπ . I do not discuss this topic any further due to the lack of space but refer the
reader to Refs. [74] and [75] for recent applications to the magnetic form factor of the deuteron and
magnetic moments of light nuclei. Finally, progress in the χEFT treatment of Compton scattering
off light nuclei is summarized in Ref. [76].

4. Effective field theory on the lattice

Recently, a discretized version of χEFT has been developed and successively applied to com-
pute the properties of few- and many-nucleon systems. In this framework, pions and nucleons are
treated as point-like particles on an Euclidean space-time lattice, and the path integral is evaluated
by Monte Carlo sampling [77, 78, 79, 80]. Using hadronic DOFs allows one to probe large vol-
umes and greater numbers of nucleons as compared to lattice QCD. Clearly, the method is only
applicable at low energies where χEFT is expected to converge.

The crucial object to calculate in our nuclear lattice simulations is the correlation function
for A nucleons in the Euclidean space-time, ZA(t) = 〈ΨA|exp(−tH)|ΨA〉, where |ΨA〉 denotes the
Slater determinants for A free nucleons, H is the Hamiltonian of the system and t the Euclidean
time. The correlation function can be most efficiently calculated using the Hubbard-Stratonovich
transformation to get rid of terms in the action quartic in the nucleon fields (at the expense of
introducing interactions with auxiliary fields) and employing the hybrid Monte Carlo technique,
see [80] for more details. Once ZA(t) is computed, the ground state energy of the A-nucleon
system can be extracted from the asymptotic behavior of the correlation function for large t, E0

A =

− limt→∞ d(lnZA)/dt. In a similar way one can also obtain energies of low-lying excited states and
compute expectation values of normal ordered operators.

The most advanced studies within this framework are so far performed at N2LO in the chiral
expansion. The simulations are carried out using an (improved) LO action which incorporates the
physics of the 1π-exchange and the LO NN contact interactions. Higher-order corrections to the
nuclear forces including the Coulomb interaction and 3NFs are taken into account perturbatively,
see [81] for details. The resulting framework was recently applied to calculate the ground state
energies of 4He, 8Be and 12C as well as the low-lying excitation energies in 12C including the
the second spin-0 state, the famous Hoyle state [82, 83], see Fig. 7. All calculated energies are
in a very good agreement with experiment. While the ground and spin-2 states of 12C have been
also calculated by other groups using different methods, the results for the Hoyle state are the first
ab initio calculations. The Hoyle state is known to play a crucial role for producing 12C, 16O
and other elements necessary for life via the triple-alpha process in the red giant phase of stars.
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Figure 7: Left panel: Lattice results of Ref. [83] for the ener-
gies of low-lying even-parity states of 12C compared to exper-
imental values (in units of MeV). Right panel: “Survivability
bands” of carbon-oxigen based life obtained from lattice sim-
ulations of Ref. [84] as explained in the text.
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The crucial quantity that controls the production rate is the energy ε of the Hoyle state relative to
the triple-alpha threshold which is experimentally known to be ε = 397.47(18) keV. Changing ε

by an amount of ±100 keV results in a strong reduction of the formation of 12C and 16O in the
universe making the emergence of carbon-based life impossible. It is, therefore, very interesting
to investigate how this seemingly fine-tuned quantity depends on the fundamental constants of
nature such as mq. We have studied the sensitivity of ε to variations of mq within nuclear lattice
simulations in Ref. [84]. Fig. 7 shows the survivability bands of carbon-based life under 1% and
5% changes of mq. Here, Ās,t ≡ (∂a−1

1S0,3S1/∂Mπ)Mphys
π

denote the slope of the inverse NN S-wave
scattering lengths as functions of the pion mass. These quantities can, in principle, be computed
in lattice-QCD. The data point in the right panel of Fig. 7 corresponds to the recent N2LO results
of Ref. [28] for chiral extrapolations of a−1

1S0,3S1 shown in Fig. 3. These findings suggest that the
formation of carbon and oxygen in our universe would survive a ∼ 2% change in the light quark
mass.
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