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In this talk some illustrative lattice results are presented. It is shown that lattice QCD reached a
new era: today several continuum extrapolated results, all the way down to physical light quark
masses are available. In particular, the hadron spectrum, FK/Fπ , the quark masses and a new way
to set the scale are discussed. Some QCD thermodynamics results, such as the equation of state
and fluctuations are briefly listed, too.
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1. Introduction

Lattice quantum chromodynamics (QCD) is the most systematic tool to understand the nonper-
turbative regime of strong interactions. It has a long history going back to the early 1970s. Lattice
gauge theory was introduced in Ref. [1]. After almost forty years, lattice QCD entered a new era.
Today, we have several full results for various physical questions. These answers represent find-
ings with fully controlled systematic uncertainties at physical quark masses (directly simulating at
them or extrapolating from pion masses, e.g. below 200 MeV to the physical pion mass value of
135 MeV) with controlled continuum extrapolation (at least three lattice spacings in the scaling
region).

Since it is hard for non-lattice theorists to judge if and how these procedures were carried
out there is a growing interest for summary papers, which carefully analyze these issues. As an
illustration for such a summary Table 1 is shown. It is depicting the upper part of Table 2. of
Ref. [2] with the most recent results on the light and strange quark masses. For clarity they used a
color coding with red, orange or green, respectively. The colored symbols illustrate that the various
sources of systematics were controlled in an unsatisfactory (red), reasonable (orange) or convincing
(gree) way. Clearly, the goal is to have everywhere “green stars”. However, as it can be seen, it
is very difficult to simulataneously fulfill the above two conditions (thus, controlled chiral –more
precisely physical mass– and continuum extrapolations). It is important to note, that today all of
the listed works have one or several “green stars” (for some of them all of the ingredients are at
that level, which we call full result). Similarly instructive is to recognize that the first “green star”
in the full table [2] appears as late as 2007. The main motivation for the above discussion was to
emphasize that lattice results may still have uncontrolled systematic uncertainties. Findings should
not always be taken at face value but more care is needed when one interprets them. The good news
is, however, that more and more full results will appear in the literature, that is why it is legitimate
to speak about a new era.

In this proceedings, several full results from the Budapest–Marseille–Wuppertal Collabora-
tion are summarized. We used both staggered and Wilson fermions. Staggered fermions were used
mostly for thermodynamics and Wilson fermions mostly for T=0 physics. Since QCD thermo-
dynamics is related to the restoration of the chiral symmetry, it is important to apply a fermion
formulation with such a symmetry. Note, that staggered fermions are (in some sense) not as clean
theoretically as Wilson fermions, that is the reason why we applied Wilson fermions in our T=0
studies, for which no symmetry restoration is needed.

This summary is structured as follows. In Sect. 2, T=0 physics is discussed. The advantage of
smearing is illustrated. A fully controlled determination of the light hadron spectrum is presented.
The light and strange quark masses are calculated. The usefulness of a new scale definition is
illustrated. In Sect. 3, QCD at nonvanishing temperatures is studied. The equation of state is
presented. Results at non-vanishing chemical potentials and on fluctuations are briefly discussed.

2. QCD at vanishing temperatures

This section of the report presents some selected T=0 lattice QCD results of the Budapest–Marseille–
Wuppertal Collaboration. The vast majority of our T=0 results were obtained using smeared Wilson fermions.
We utilized two types of very similar smearing. For the spectrum calculation, for FK/Fπ (and for the nucleon
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PACS-CS 10 P F � � F a 2.78(27) 86.7(2.3)
MILC 10A C • F F • − 3.19(4)(5)(16) –
HPQCD 10 A • F F F − 3.39(6)∗ 92.2(1.3)
BMW 10AB P F F F F b 3.469(47)(48) 95.5(1.1)(1.5)
RBC/UKQCD P • • F F c 3.59(13)(14)(8) 96.2(1.6)(0.2)(2.1)
Blum et al. 10 P • � • F − 3.44(12)(22) 97.6(2.9)(5.5)

Table 1: Results of various groups for the light and strange quark masses. The colored symbols indicate
how well the individual systematic uncertainties were controlled (see text).

sigma term, which we do not discuss here) we applied six steps of stout smearing at three lattice spacings
down to 0.065 fm and pion masses down to 190 MeV (we call this our 2008 data set). For the quark mass
determination (and also [3] for BK , which is not discussed here) two steps of HEX [4] smearing were applied.
We call this our 2010 data set, which covers five lattice spacings down to 0.054 fm and pion masses down
to 120 MeV. These pion masses enabled an interpolation to the physical mass point. In both data sets the
strange quark mass was set to its approximate physical value. When discussing the spectrum, our general
strategy to control all systematics is discussed in some detail. For the FK/Fπ determination our error analysis
by using the hystogram method is illustrated. For all of the works listed here a similar strategy to control all
systematics and hystogram analysis to determine the errors were carried out.

2.1 Light hadron spectrum

This part summarizes our light hadron spectrum analysis[5] (for a recent review on the topic see
Ref.[6]).

We aimed at a full calculation controlling all the systematic uncertainties. To that end we set up five
conditions (these conditions are accepted by a large fraction of the community as reliable; of course one can
choose other conditions and can focus on other points of interest). These conditions are listed below and a
few of them are briefly commented on in parenthesis concerning our analysis.

I. The inclusion of the up (u), down (d) and strange (s) quarks in the fermion determinant with an exact
algorithm and with an action whose universality class is QCD. For the light hadron spectrum, the effects of
the heavier charm, bottom and top quarks are included in the coupling constant and light quark masses.

II. A complete determination of the masses of the light ground-state, flavor nonsinglet mesons and
octet and decuplet baryons. Three of these are used to fix the masses of the isospin averaged light (mud) and
strange (ms) quark masses and the overall scale in physical units. (We set the overall scale by using one of
the two most precise hadron masses of our analysis: in one case it was the Ξ in the other case it was the Ω

baryon.)
III. Large volumes to guarantee small finite-size effects and at least one data point at a significantly

larger volume to confirm the smallness of these effects. In large volumes, finite-size corrections to the
spectrum are exponentially small [7, 8]. As a conservative rule of thumb Mπ L>∼4, with Mπ the pion mass and
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Figure 1: Pion mass dependence of the nucleon (N) and Ω for all three values of the lattice spacing. Left
panel: masses normalized by MΞ, evaluated at the corresponding simulation points. Right panel: masses in
physical units. The scale in this case is set by MΞ at the physical point. Triangles on dotted lines correspond
to a≈0.125 fm, squares on dashed lines to a≈0.085 fm and circles on solid lines to a≈0.065 fm. The
points were obtained by interpolating the lattice results to the physical ms (defined by setting 2M2

K-M2
π to its

physical value). The curves are the corresponding fits. The crosses are the continuum extrapolated values in
the physical pion mass limit. The lattice-spacing dependence of the results is barely significant statistically
despite the factor of 3.7 separating the squares of the largest (a≈0.125 fm) and smallest (a≈0.065 fm)
lattice spacings. The χ2/degrees of freedom values of the fits in the left panel are 9.46/14 (Ω) and 7.10/14
(N), whereas those of the fits in the right panel are 10.6/14 (Ω) and 9.33/14 (N), respectively.

L the lattice size, guarantees that finite-volume errors in the spectrum are around or below the percent level.
Resonances require special care. Their finite volume behavior is more involved. The literature provides a
conceptually satisfactory framework for these effects [9, 10] which should be included in the analysis. (For
one of our simulation points we used several volumes and determined the volume dependence, which was in
good agreement with Ref.[11]. This was included as a negligible correction at all points. We also calculated
the corrections necessary to reconstruct the resonance masses from the finite volume ground-state energy
and included them.)

IV. Controlled interpolations and extrapolations of the results to physical mud and ms (or eventu-
ally directly simulating at these mass values). Although interpolations to physical ms, corresponding to
MK'495 MeV, are straightforward, the extrapolations to the physical value of mud , corresponding to a pion
mass of Mπ'135 MeV, are difficult. They need computationally intensive calculations with Mπ reaching
down to 200 MeV or less. (We used chiral perturbation theory and Taylor expansion to reach the physical
value of the pion mass from our 190 MeV pion mass point.)

V. Controlled extrapolations to the continuum limit, requiring that the calculations be performed at no
less than three values of the lattice spacing, in order to guarantee that the scaling region is reached. (Our
three-flavor scaling study [12] showed that hadron masses deviate from their continuum values by less than
approximately 1% for lattice spacings up to a≈0.125 fm. This observation was confirmed by the present
analysis.)

Our analysis includes all five ingredients listed above. The combined extrapolation to the physical
mass point and to the continuum limit is shown in Fig. 1. As an illustration we show a comparison with
other lattice results, too [13].

2.2 The ratio of FK/Fπ

We used the same 2008 data set (which was used to determine the light hadron spectrum) to determine
FK/Fπ in the physical limit (extrapolated to physical quark masses and to the continuum limit). The details
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Figure 2: Left panel: the light hadron spectrum of QCD obtained by the Budapest-Marseille-Wuppertal
Collaboration. Horizontal lines and bands are the experimental values with their decay widths. Our results
are shown by solid circles. Vertical error bars represent our combined statistical and systematic error esti-
mates. π , K and Ξ have no error bars, because they are used to set the light quark mass, the strange quark
mass and the overall scale, respectively. Right panel: various results for the hadrons spectrum as shown in
Ref. [13] (only light and strange quarks)
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Figure 3: Extrapolation of the lattice data for FK/Fπ to the physical point for a particular choice of two-point
function fits (tmin/a = 6,8,11 for β = 3.3,3.57,3.7, respectively), mass cut (Mπ<460 MeV) and using the
Ξ to set the scale. The plot shows one (of the 21) fits used to estimate the uncertainty associated with the
functional form used for the mass extrapolation. The data have been slightly adjusted to the physical strange
quark mass, as well as corrected for tiny finite-volume effects.

of the calculation can be found in Ref. [14]. We followed a proposal by Marciano [15] to derive |Vus| from
|Vud |, using a lattice determination of the ratio FK/Fπ of leptonic decay constants.

The following discussion illustrates our generic strategy to estimate errors. Our results for FK/Fπ dis-
play a small dependence on lattice spacing. To estimate the systematic error associated with the continuum
extrapolation we consider fits with and without O(a2) and O(a) Symanzik factors. These choices, with
seven choices for the fitting strategies to the physical mass point, 18 different fitting intervals for the indi-
vidual correlators, two scale-setting procedures and two cuts for the pion mass range (350 and 460 MeV)
provided us with 3 ·7 ·18 ·2 ·2 = 1512 alternative analyses. The central value obtained from each procedure
is weighted with the quality of the (correlated) fit to construct a distribution. The median and the 16th/84th
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Figure 4: Summary of our simulation points. The pion masses and the spatial sizes of the lattices are
shown for our five lattice spacings. The percentage labels indicate regions, in which the expected finite
volume effect [11] on Mπ is larger than 1%, 0.3% and 0.1%, respectively. This effect is smaller than about
0.5% for all of our runs and, as described, we corrected for it. Error bars are statistical.

percentiles yield the final central value and the systematic error associated with possible excited state con-
tributions, scale setting, and the chiral and continuum extrapolations. To determine the statistical error, the
whole procedure is bootstrapped (with 2000 samples) and the variance of the resulting medians is computed.

A “snapshot” fit using our data set (with a specific choice for the time intervals used in fitting the
correlators, scale setting, and pion mass range) can be seen in Fig. 3. To avoid the complications of a
multi-dimensional plot, the extrapolation is shown as a function of the pion mass only.

Following the procedure outlined above, our final result is

FK

Fπ

∣∣∣∣
phys

= 1.192(7)stat(6)syst or
Fπ

FK

∣∣∣∣
phys

= 0.839(5)stat(4)syst (2.1)

at the physical point. This can be transformed to |Vus|/|Vud | = 0.2315(19). Using the most precise in-
formation on the first CKM matrix element available today, |Vud | = 0.97425(22) [16], we obtain |Vus| =
0.2256(18).

The same 2008 data set was used to determine the nucleon’s sigma term [17]. Without going into details
the final result reads σπN = 39(4)+18

−7 (the first error is the statistical the second one is the systematic).

2.3 Light and strange quark masses.

In the two previous subsections two illustrative works were presented, which used our 2008 data set.
The present (and also the next) subsection deals with the 2010 data set. This data set contains five lattice
spacings (a≈0.116, 0.093, 0.077, 0.065 and 0.054 fm), which are the basis for the continuum extrapolation.
As we will see, the difference for the quark masses (the topic of this subsection) between the results obtained
on the finest lattice and those in the continuum limit was∼3%, whereas between those of the coarsest lattice
and the continuum limit was ∼10%. Our data set contains physical or smaller than physical quark masses
for three of the lattice spacings. The data set is well illustrated on a plot showing the pion mass and the
spatial extension (Fig. 4). The details of the quark mass determination can be found in Refs.[18, 19].

In the present analysis (determination of the light and strange quark masses) essentially the same con-
ditions should be applied as for the case of the light hadron spectrum. In addition to the hadron masses, the
unrenormalized partially conserved axial current (PCAC) quark masses are determined.

Since the quark masses depend on the renormalization scheme we need in addition a fully nonper-
turbative renormalization procedure. While the PCAC masses renormalize multiplicatively, the bare La-
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Figure 5: Continuum extrapolation of the average up/down quark mass, of the strange quark mass and of
the ratio of the two. The errors of the individual points, which are statistical only here, are smaller than the
symbols in most of the cases. The only exceptions are the light quark mass and its ratio to the strange quark
mass at the two finest lattice spacings. These exceptions underline the importance of using physical quark
masses to reach a high accuracy.

grangian masses require an additional additive renormalization. In the difference d≡mbare
s −mbare

ud , this ad-
ditive renormalization is eliminated. Moreover, the multiplicative renormalization factors cancel in the ratio
r≡mPCAC

s /mPCAC
ud . To obtain fully renormalized quantities, we must still multiply d by 1/ZS, the inverse of

the scalar density renormalization factor. From the renormalized mass difference d/ZS and the renormal-
ization independent ratio r we obtain mren

ud = (d/ZS)/(r−1) and mren
s = (rd/ZS)/(r−1) in the unimproved

case. Our final analysis is tree-level O(a) improved with slightly more complicated formulae (see Sect. 11.2
of Ref. [19]).

The strange and average up-down quark masses renormalized in the RI (regularization-independent)
scheme (Rome-Southampton method, see Ref. [20]) at 4 GeV are extrapolated to the continuum and inter-
polated to the physical mass point. In these fits, we include terms to correct linear (αsa) or quadratic (a2)
cutoff effects. A combined mass and lattice spacing fit is carried out. We show the continuum extrapolation
for mud and ms in the RI scheme at 4 GeV, as well as their ratio, in Fig. 5. In order to control the systematic
uncertainties we carry out 288 such analyses [19]. The figure depicts results from one analysis with one of
the best fit qualities.

Since all the systematic uncertainties have been controlled the result can be considered as a full result.
This is illustrated by the fact that in Table 1 this result received overall “green stars”.

The determination of the individual up and down quark masses at the physical point is in principle
possible using exclusively lattice simulations. To that end one may include the electromagnetic U(1) gauge
field in the lattice framework, as was done recently e.g. in Ref. [21, 22]. We have not carried out such a
calculation (yet). Nevertheless our precise ms and mud values can be combined [19] with model-independent
results based on dispersive studies of η→3π decays to derive the individual up and down quark masses (see
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RI (4 GeV) RGI MS (2 GeV)
ms 96.4(1.1)(1.5) 127.3(1.5)(1.9) 95.5(1.1)(1.5)
mud 3.503(48)(49) 4.624(63)(64) 3.469(47)(48)
mu 2.17(04)(10) 2.86(05)(13) 2.15(03)(10)
md 4.84(07)(12) 6.39(09)(15) 4.79(07)(12)

Table 2: Renormalized quark masses in the RI scheme at 4 GeV, and after conversion to RGI and the MS
scheme at 2 GeV. The RI values are fully nonperturbative, so the first column is our main result. The first two
rows emerge directly from our lattice calculation. The last two include additional dispersive information.

Table 2). In this approach the relationship between the input parameters and experiments is not as transparent
as for the determination of ms and mud (for details see Ref.[19]).

2.4 Scale setting.

Our method [23] is based on the Wilson flow. The Wilson flow was considered in the context of trivial-
izing maps by Luscher [24]. It was studied earlier by Narayanan and Neuberger [25] in a different context,
too. Its important renormalization properties were clarified in [26, 27]. Its application to scale setting was
suggested recently in [26]. The method can be summarized as follows. On each original configuration we
integrate infinitesimal smearing steps up to a scale t, whose units are inverse mass-squared. The smearing
is performed until a well-chosen dimensionless observable reaches a specified value. The universal “flow
time,” t = t0, at which this happens can then be used to set the scale on the original lattices.

Integrating the infinitesimal smearing steps is equivalent to finding the solution to the flow equation
[25, 26]: V̇t = Z(Vt)Vt , V0 = U where Vt are the gauge links at flow time t and U are the original gauge
links. (In [26, 27], where the Wilson action is used, Z(Vt) is the derivative of the plaquette action and the
corresponding flow is called the Wilson flow. For improved gauge actions, one can take Z(Vt) to be the
algebra-valued derivative of the gauge action.) To obtain the scale t0, it is suggested in [26] to integrate
the flow and to compute t2〈E(t)〉 as a function of t, t0 being the flow time where t2〈E(t)〉 reaches 0.3.
Here 〈E(t)〉 is the expectation value of the continuum-like action density Ga

µν(t)Ga
µν(t)/4. We proposed

another quantity, namely w0 being the flow time where t · (d/dt)t2〈E(t)〉 reaches 0.3. The most important
reasons for this choice can be summarized as follows. While t2〈E(t)〉 incorporates information about the
gauge configurations from all scales larger than O(1/

√
t) (thus including scales also around the cutoff),

W (t) mostly depends on scales around O(1/
√

t). This is an advantage, because the behavior of the flow at
small t ∼ a2 is subject to discretization effects.

In order to determine the scale we used our 2010 data set with two steps of HEX smearing (Wilson
fermions) and compared it with the results obtained on our T=0 subset of the thermodynamics runs (see
next section). In both cases w0 is interpolated to the physical quark masses as well as extrapolated into
the continuum. The Ω mass is used to convert these scales to physical units (with our smeared actions
hadron mass ratios show very small cutoff effects [12, 5]). Representative continuum limits (see below) are
displayed in Fig. 6, where the staggered and Wilson results are shown on the l.h.s. and r.h.s., respectively.
The plot indicates that w0 has cutoff effects similar to MΩ, resulting in a very mild continuum scaling,
and that the uncertainties on the extrapolated value are very small. Moreover, the staggered and Wilson
results are in good agreement and the precisions reached with the two actions are on the same level. We
quote the Wilson result, which does not rely on the “rooting” of the fermion determinant, as our final result:
w0=0.1755(18)(04) fm, where the first error is statistical and the second is systematic. Note that the overall
uncertainty is 1%, most of which is statistical. Furthemore, the statistical error in the dimensionless quantity
w0MΩ comes dominantly from aMΩ. Thus, the error on w0/a itself is subdominant, typically on the level
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of a few per mil or less. This fact makes w0/a a particularly attractive candidate to set the relative scale
between simulations for continuum extrapolations and for comparing calculations from different groups.

3. Results at non-vanishing temperatures and/or chemical potentials

At this conference the most important thermodynamics results were summarized by P. Petreczky [28].
Here only a few illustrative results are presented.

3.1 Status of the equation of state.

The QCD transition at non-vanishing temperatures and at zero chemical potential is an analytic cross-
over [29]. The first step to obtain any trustworthy result in QCD thermodynamics is to determine the overall
scale of this analytic QCD transition. Its value was disputed for some years, but it is a great succes of
lattice QCD that the field has reached now a point at which the results from different groups completely
agree [30, 31, 32, 33]. The next important step is the determination of the equation of state. There are
various calculations with different fermion formulations. So far the most precise results have been obtained
by staggered quarks. In these calculations the quark masses (light and strange) take their physical (or ap-
proximately physical) values. There is still a discrepancy for the equation of state in the literature. The
Wuppertal-Budapest group obtained in 2005 [34] a value around 4 for the peak height of the trace anomaly
(ε–3p), which was confirmed in 2010 [35] (at three characteristic temperatures the continuum result was
given; it pinned down the result for the equation of state, which is also given as a simple parametrization).
The hotQCD collaboration typically receives higher values for the peak height of the trace anomaly (for a
recent summary see e.g. Ref. [36]). The left panel of Fig. 7 shows the comparison of the results of the two
groups. Obviously, more work is needed to clarify the source of the difference.

Far less is known about the transition at non-vanishing chemical potentials. About a decade ago [37]
a renewed interest resulted in many interesting results (for a recent review see e.g. [38] or [39]), though
only very few with continuum extrapolations and physical quark masses. One of them is the curvature of the
phase diagram [40], the other is the equation of state for small non-vanishing chemical potentials [41].
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Figure 6: Representative continuum extrapolations of the w0 scale, at the physical mass point. The values
at different lattice spacings are obtaind by using the Wilson flow described below. The continuum limit
values on the plots are results from our final, full analyses. The results obtained with the two very different
actions (staggered fermions on the left and Wilson fermions on the right panel) are in good agreement and
the overall uncertainties are very small.
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Figure 7: Comparison of the equation of states obtained by the Wuppertal-Budapest group (stout action)
and the hotQCD Collaboration. There is still a sizable discrepancy (left panel). Comparison of the strange
susceptibilities. In the continuum limit the two results agree (right panel).

3.2 Susceptibilities from lattice.

Fluctuations and correlations of conserved charges are important probes of various aspects of decon-
finement. This is because fluctuation of conserved charges are sensitive to the underlying degrees of freedom
which could be hadronic (in the low temperature phase) or partonic (in the high temperature phase). Fluc-
tuations of conserved charges have been studied using different staggered actions (though some results with
Wilson fermions are also available). The two most complete calculations have been carried out by the
Wuppertal-Budapest group and by the hotQCD Collaboration [42, 43]. As an illustration the right panel of
Fig. 7 shows the comparison of the results of the two groups for the strange quark number susceptibility.
Fluctuations are small at low temperatures because strangness is carried by massive strange hadrons (in this
case mostly by kaons). This part of the figure is well described by the Hadron Resonance Gas (HRG) model.
Strangeness fluctuations sharply rise in the transition region, in which quarks get more and more free. The
susceptibility approaches the value one for infinitely large temperatures. Note that the strange susceptibil-
ity is the quantity, which was determined with a high precision. Other quantities and particularly higher
cumulants are under investigation by many lattice groups and high quality results are expected in the near
future.
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