
P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
0
2
2

Review of αs determinations

Antonio Pich∗
Departament de Física Teòrica, IFIC, Universitat de València – CSIC, Edifici d’Instituts de
Paterna, Apt. Correus 22085, E-46071, València, Spain
E-mail: antonio.pich@ific.uv.es

The present knowledge on the strong coupling is briefly summarized. The most precise determi-
nations of αs, at different energies, are reviewed and compared at the Z mass scale, using the pre-
dicted QCD running. The impressive agreement achieved between experimental measurements
and theoretical predictions constitutes a beautiful and very significant test of Asymptotic Free-
dom, establishing QCD as the fundamental theory of the strong interaction. The world average
value of the strong coupling is found to be αs(M2

Z) = 0.1186±0.0007.

Xth Quark Confinement and the Hadron Spectrum
8–12 October 2012
TUM Campus Garching, Munich, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:antonio.pich@ific.uv.es


P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
0
2
2

Review of αs determinations Antonio Pich

1. Introduction

In the massless quark limit, Quantum Chromodynamics (QCD) has only one free parameter:
the strong coupling αs. All strong interaction phenomena should be described in terms of this sin-
gle input. The measurements of αs at different processes and at different mass scales provide then
a crucial test of QCD. Obviously, the test should be restricted to those processes where perturbative
techniques are reliable. Moreover, the same definition of αs should be taken everywhere; the MS
scheme is usually adopted as the standard convention. Since the running coupling is a function
of energy, one can either compare the different determinations at the different scales where they
are measured, checking in this way the predicted momentum dependence of the coupling, or use
this prediction to bring all measurements to a common reference scale where they are compared.
Nowadays, the Z mass scale is conventionally chosen for such a comparison. In order to assess
the significance of the test, it is very important to have a good understanding of the uncertainties
associated with the different measurements. This is not easy because small non-perturbative effects
can be present in many observables. In addition, some quantities have been computed to a very
good perturbative accuracy, next-to-next-to-leading order (NNLO) or even next-to-next-to-next-to-
leading order (N3LO), while others are only known at the leading (LO) or next-to-leading order
(NLO); the resulting values of αs refer then to different perturbative approximations. The theo-
retical predictions are also affected by the expected asymptotic (i.e., non-convergent) behaviour
of the perturbative series in powers of αs. Although this is a common problem of Quantum Field
Theories, it is probably more severe in QCD because the coupling is rather large (at usual energies).

The most precise determinations of the strong coupling were reviewed in detail in Refs. [1, 2]
and have been recently updated [3] in the 2012 review of particle physics [4]. I will heavily use
the information provided in these references, adding my personal biases and updating the summary
with the most recent developments.

2. QCD running and threshold matching

The scale dependence of the QCD coupling is governed by the renormalization group equation

µ
dαs(µ

2)

dµ
= αs(µ

2)β (αs) , β (αs) = ∑
n=1

βn

(
αs

π

)n
, (2.1)

where the MS β function is already known to the fourth order [5, 6] (ζ3 = 1.202056903 . . .):

β1 =
1
3

N f −
11
2
, β2 = −51

4
+

19
12

N f , β3 =
1
64

[
−2857+

5033
9

N f −
325
27

N2
f

]
,

β4 =
−1
128

[(
149753

6
+3564ζ3

)
−
(

1078361
162

+
6508
27

ζ3

)
N f

+

(
50065
162

+
6472

81
ζ3

)
N2

f +
1093
729

N3
f

]
. (2.2)

The explicit dependence with the number of quark flavours N f shows the need to properly match
the different QCDN f effective theories when crossing the corresponding quark thresholds; i.e., the
value of αs depends on the number of ‘active’ quarks considered. If one quark flavour is removed
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Figure 1: Scale dependence of αs at one (dashed), two (continuous, blue) and four (continuous, red) loops
(left). The dotted line is the 4-loop FOPT approximation in powers of αs(M2

Z)= 0.1186. The right plot shows
the 4-loop error evolution taking αs(M2

Z) = 0.1186±0.0007; the uncertainty increases at lower energies.

from the Lagrangian (its mass taken to be heavy enough to decouple), the couplings of the original
theory with N f +1 flavours and the resulting effective one with N f flavours are related through the
matching condition

α
(N f )
s (µ2) = α

(N f +1)
s (µ2)

1+
∞

∑
k=1

k

∑
n=0

ckn

[
α
(N f +1)
s (µ2)

π

]k

logn
[

µ2

M2(µ2)

] , (2.3)

where M(µ2) in the running mass of the heavy quark. The coefficients ckn are known up to four
loops (k ≤ 4) [7, 8]:

c10 = 0 , c11 = −1
6
, c20 =

11
72

, c21 = −11
24

, c22 =
1

36
,

c30 =
564731
124416

− 82043
27648

ζ3−
2633
31104

N f , c31 = −955
576

+
67

576
N f , c32 =

53
576
− 1

36
N f ,

c33 = − 1
216

, c40 = 5.17035−1.00993 N f −0.0219784 N2
f , c44 =

1
1296

,

c41 =
7391699
746496

− 2529743
165888

ζ3−
(

110341
373248

− 110779
82944

ζ3

)
N f +

6865
186624

N2
f ,

c42 =
2177
3456

− 1483
10368

N f −
77

20736
N2

f , c43 = − 1883
10368

− 127
5184

N f +
1

324
N2

f . (2.4)

Since c10 = 0, the discontinuity in αs is small for µ = M, but a larger effect is found with other
choices of the matching point. Physics should of course not depend on this choice and one should
carefully evaluate the theoretical uncertainties, allowing µ to vary within a reasonable range.

The 4-loop running coupling allows us to perform a resummation of N3LO logarithms, i.e.,
corrections of the form αs(µ

2)n+4 logn (Q2/µ2), which are very sizeable when the difference of
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scales is large. This is illustrated in Fig. 1, which shows the scale dependence of αs over a wide
range of energies, at different levels of approximation. The one-loop β -function resummation does
already a very good job, and the accuracy rapidly improves at higher orders. However, a naive
fixed-order perturbative expansion (FOPT) in powers of αs(M2

Z) does not approximate well the
result at low energies, even at four loops, because log(E/MZ) is large.

3. Inclusive observables: σ(e+e−→ hadrons) and Γ(Z→ hadrons)

The inclusive production of hadrons mediated by γ , Z and W± interactions proceeds through
the vector V µ

i j = ψ̄ jγ
µψi and axial-vector Aµ

i j = ψ̄ jγ
µγ5ψi colour-singlet quark currents (i, j =

u,d,s . . .). The theoretical analysis involves the two-point correlation functions

Π
µν

i j,J(q) ≡ i
∫

d4x eiqx 〈0|T (Jµ

i j(x)Jν
i j(0)

†)|0〉 =
(
−gµνq2 +qµqν

)
Π

(1)
i j,J(q

2)+qµqν
Π

(0)
i j,J(q

2) ,

(3.1)
where the superscript (0,1) denotes the angular momentum in the hadronic rest frame. For massless
quarks, sΠ

(0)
i j,J(s) = constant (there is a non-perturbative Goldstone-pole contribution to Π

(0)
i j,A at

s = 0, which cancels in Π
(0+1)
i j,A ). These correlators are already known to O(α4

s ) [9, 10]. In the so-
called non-singlet contributions (i 6= j), one quark loop connects the two external currents. If quark
masses are neglected, these contributions are identical for the vector and axial-vector correlators:
Π(s) ≡ Π

(0+1)
i 6= j,V (s) = Π

(0+1)
i 6= j,A (s). They are conveniently parametrized through the Euclidean Adler

function (Q2 =−q2)

D(Q2) ≡ −Q2 d
dQ2 Π(Q2) =

NC

12π2

{
1+ ∑

n=1
Kn

(
αs(Q2)

π

)n
}

, (3.2)

with NC = 3 the number of quark colours. The known (n≤ 4) coefficients take the values [9, 11, 12]:

K1 = 1 , K2 = 1.98571−0.115295 N f , K3 = 18.2427−4.21585 N f +0.0862069 N2
f ,

K4 = 135.792−34.4402 N f +1.87525 N2
f −0.0100928 N3

f . (3.3)

For neutral currents (i = j) there are additional singlet contributions where each current couples to
a different quark loop. Owing to the gluon quantum numbers (colour octet and JPC = 1−−), these
contributions start at O(α3

s ) and O(α2
s ), respectively, for the vector and axial-vector currents:

δ
SDV (Q2) =

NC

12π2 ∑
n=3

dV
n

(
αs(Q2)

π

)n

, δ
SDA(Q2) =

NC

12π2 ∑
n=2

dA
n

(
αs(Q2)

π

)n

. (3.4)

The vector-current coefficients are dV
3 =−0.41318 and dV

4 =−5.94225+0.191628 N f [10].
The electromagnetic hadronic production in e+e− annihilation is given by

Re+e−(s) ≡
σ(e+e−→ hadrons)
σ(e+e−→ µ+µ−)

= 12π

∑
f

Q2
f ImΠ(s)+

(
∑

f
Q f

)2

Imδ
S
ΠV (s)


= ∑

f
Q2

f NC

{
1+ ∑

n≥1
Fn

(
αs(s)

π

)n
}

+ O

(
m2

q

s
,
Λ4

s2

)
. (3.5)
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The sum over quark electric charges of different signs strongly suppresses the singlet contribution,
which has been included as a small correction to the coefficients Fn≥3. For N f = 5 flavours, one
gets F1 = 1, F2 = 1.4092, F3 =−12.805 and F4 =−80.434 [10].

The calculated perturbative series is actually an expansion in powers of αs(µ
2) with coeffi-

cients containing a polynomial dependence on log(s/µ2). In Eq. (3.5), these logarithms have been
resummed into the running coupling by taking µ2 = s. The physical ratio Re+e−(s) is of course in-
dependent of the renormalization scale µ , but the truncated series contains a residual µ-dependence
of O(αN+1

s ), where N = 4 is the last included term, which must be taken into account in the theoret-
ical uncertainty. Since non-perturbative corrections are suppressed by Λ4/s2 (the gauge-invariant
operators contributing to the current correlators have dimensions D≥ 4), at high energies one can
perform a N3LO determination of αs(s). Unfortunately, the experimental uncertainties are large.

A much more accurate determination can be obtained from the precise experimental mea-
surement of the hadronic Z decay rate. The electroweak neutral current Jµ

Z = ∑ f (v fV
µ

f f + a f A
µ

f f )

involves the vector and axial-vector currents, weighted with the corresponding Z couplings. Since
a f = 2I f , the singlet axial contributions of the two members of a weak isospin doublet cancel each
other for equal quark masses; however, the large top mass generates very important singlet axial
corrections which start at O(α2

s ). The resulting QCD series takes the form

RZ ≡
Γ(Z→ hadrons)

Γ(Z→ e+e−)
= REW

Z NC

{
1+ ∑

n=1
F̃n

(
αs(M2

Z)

π

)n
}

, (3.6)

with F̃1 = 1, F̃2 = 0.76264, F̃3 = −15.490 and F̃4 = −68.241 [10]. Taking properly into account
the electroweak corrections, the ratio RZ is included in the global fit to electroweak precision data,
which results in a quite accurate determination of αs(M2

Z). Note that this assumes the validity of the
electroweak Standard Model with the minimal Higgs mechanism. The PDG quotes the result [4]

α
(N f =5)
s (M2

Z) ≡ αs(M2
Z) = 0.1197±0.0028 . (3.7)

4. The hadronic τ decay width

The inclusive hadronic decay of the τ lepton provides a very clean way to determine αs at
low energies [13]. The QCD correlation function of two left-handed W currents receives only
non-singlet contributions. Restricting the analysis to the dominant Cabibbo-allowed decay width,

Rτ,V+A ≡
Γ[τ−→ ντ +hadrons(S = 0)]

Γ[τ−→ ντe−ν̄e]

= 12π |Vud |2
∫ m2

τ

0

ds
m2

τ

(
1− s

m2
τ

)2[(
1+2

s
m2

τ

)
ImΠ

(1)
ud,V+A(s)+ ImΠ

(0)
ud,V+A(s)

]
. (4.1)

Although at low s the integrand cannot be predicted from first principles, the integral itself can
be calculated systematically by exploiting the analytic properties of the current correlators. They
are analytic functions of s except along the positive real s-axis, where their imaginary parts have
discontinuities. Rτ,V+A can then be written as a contour integral in the complex s-plane running
counter-clockwise around the circle |s|= m2

τ [13 – 15]:

Rτ,V+A = 6πi |Vud |2
∮
|s|=m2

τ

ds
m2

τ

(
1− s

m2
τ

)2[(
1+2

s
m2

τ

)
Π

(0+1)
ud,V+A(s)−2

s
m2

τ

Π
(0)
ud,V+A(s)

]
. (4.2)
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In the chiral limit (mu,d = 0), only the correlator Π
(0+1)
ud,V+A(s) contributes. Using the Operator Prod-

uct Expansion (OPE), Π(0+1)(s) = ∑DCD/(−s)D/2, to evaluate the contour integral, Rτ,V+A can be
expressed as an expansion in powers of 1/m2

τ [15]. The theoretical prediction can be written as

Rτ,V+A = NC |Vud |2 SEW {1+δP +δNP} , (4.3)

where SEW = 1.0201± 0.0003 contains the electroweak radiative corrections [16 – 18]. The non-
perturbative contributions are suppressed by six powers of the τ mass [15]1 and can be extracted
from the invariant-mass distribution of the final hadrons [19 – 22]. The presently most complete and
precise experimental analysis, performed with the ALEPH data, obtains δNP = −0.0059±0.0014
[23]. Quark mass effects [15, 24, 25] amount to a negligible correction smaller than 10−4.

The dominant correction (∼ 20%) is the perturbative QCD contribution (N f = 3)

δP = ∑
n=1

Kn A(n)(αs) = aτ +5.20 a2
τ +26 a3

τ +127 a4
τ + · · · , (4.4)

where the contour integrals [26]

A(n)(αs) =
1

2πi

∮
|s|=m2

τ

ds
s

(
αs(−s)

π

)n(
1−2

s
m2

τ

+2
s3

m6
τ

− s4

m8
τ

)
(4.5)

only depend on aτ ≡ αs(m2
τ)/π . The main uncertainty originates in the treatment of higher-order

corrections [9, 23, 27 – 36]. The FOPT expansion in powers of aτ , shown in the r.h.s of Eq. (4.4),
has coefficients much larger than Kn because the long running of αs along the circle generates large
logarithms, log(−s/m2

τ) = iφ (φ ∈ [−π,π]), giving rise to a non-convergent series. These large
corrections can be resummed to all orders, using the renormalization-group β -function equation to
compute exactly (up to unknown βn>4 contributions) the functions A(n)(αs). One obtains then a
well-behaved expansion, known as contour-improved perturbation theory (CIPT) [26, 37], which
results in smaller values for δP than the FOPT approach. However, assuming that the known n≤ 4
terms of the Adler series are already governed by low-lying infrared renormalons (i.e., already
sensitive to the asymptotic series regime), it has been argued that CIPT could miss cancelations
induced by the renormalonic behaviour [28]; in that case, FOPT could approach faster the Borel
summation of the full renormalon series. Making optimal conformal mappings in the Borel plane
and properly implementing the CIPT procedure within the Borel transform, one also obtains nu-
merical results close to the FOPT value [29, 30].

The present experimental value Rτ,V+A = 3.4671±0.0084 [38] implies δP = 0.1995±0.0033.
Using CIPT one gets αs(m2

τ) = 0.339± 0.013, while FOPT would give αs(m2
τ) = 0.318± 0.014

[27]. Combining the two results, but keeping conservatively the smallest error, we get

α
(N f =3)
s (m2

τ) = 0.329±0.013 , αs(M2
Z) = 0.1198±0.0015 . (4.6)

Although α
(N f =3)
s (m2

τ) is significantly larger (16σ ) than the result obtained from the Z hadronic
width in Eq. (3.7), after evolution up to the scale MZ there is an excellent agreement between

1Since (1− x)2(1+ 2x) = 1− 3x2 + 2x3, the only non-perturbative contributions to the circle integration originate
from operators with dimensions D = 6 and 8 (up to tiny logarithmic running corrections).
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the two measurements. These two determinations provide a beautiful test of the predicted QCD
running; i.e., a very significant experimental verification of asymptotic freedom.

At the presently achieved accuracy, a better experimental assessment of δNP would be wel-
come, which requires a more precise determination of the inclusive hadronic distribution. This
would also allow for an investigation of uncertainties related with the use of the OPE near the time-
like axis (duality violations) [23, 39, 40]; in Rτ they are heavily suppressed by the presence in (4.2)
of a double zero at s = m2

τ [15], but they could be more relevant for other moments of the hadronic
invariant-mass distribution. A recent fit to rescaled OPAL data, with moments chosen to maximize
duality violations, finds δNP = −0.003± 0.012 and αs(m2

τ) = 0.333± 0.018 (CIPT+FOPT) [41],
in agreement but less precise than the result obtained from the ALEPH invariant-mass distribution,
δNP =−0.0059±0.0014 and αs(m2

τ) = 0.344±0.009 (CIPT) [23].

5. Lattice determination

Lattice simulations determine the strong coupling by measuring various short-distance quan-
tities (non-perturbatively), through a numerical evaluation of the QCD functional integral, and
comparing the results with the corresponding perturbative expansions in powers of αs, using lattice
QCD perturbation theory which includes lattice-spacing artifacts. Modern simulations are done
with 2+ 1 flavours of sea quarks (one tuned to the strange quark and the other two taken with
masses as small as possible for up and down) and have a NNLO perturbative accuracy. At least one
dimensionful physical quantity is needed to convert from lattice units to GeV, i.e., to fix the scale
at which αs is measured.

The HPQCD collaboration has extracted the coupling, following two different approaches with
different systematics. They use staggered fermions and the lattice spacing is determined from a
wide variety of physical quantities. From 22 different simulations of small Wilson loops they obtain
the value αs(M2

Z) = 0.1184±0.0006 [42]. In the second approach, they measure four moments of
the correlation function of two heavy-quark currents, at 8 different values of the heavy-quark mass
between mc and mb and 5 different lattice spacings, and obtain αs(M2

Z) = 0.1183±0.0007 [42]. An
independent perturbative analysis, using the results of a previous HPQCD-UKQCD simulation [43]
already superseded by the new data, finds a slightly larger value αs(M2

Z) = 0.1192±0.0011 [44].
The PACS-CS collaboration adopts the so-called Schrödinger functional scheme to carry out a

non-perturbative running of the coupling, from the low energy region used to introduce the physi-
cal scale to high energies where the matching to the MS scheme is performed. The simulations are
done with the Iwasaki gauge action and the non-perturbatively improved Wilson-fermion action
with the clover term. They quote the result αs(M2

Z) = 0.1205±0.0008±0.0005+0.0000
−0.0017 [45]. The

Schrödinger functional scheme has been also used by the ALPHA collaboration to study the run-
ning of αs with N f = 0,2 dynamical flavours, but the results with N f = 4 are not yet complete [46].

A numerical simulation of the Adler function, performed with dynamical overlap fermions
by the JLQCD collaboration, finds αs(M2

Z) = 0.1181± 0.0003+0.0014
−0.0012 [47]. The uncertainty is

dominated by the lattice spacing due to the relatively small and coarse lattice used.
More recently, the ETM collaboration has simulated the ghost-gluon vertex, including a dy-

namical charm quark (N f = 2+1+1), and has studied the running of αs over a wide momentum
window between 1.7 and 6.8 GeV. Fitting the data with a MOM-like Taylor coupling plus a 1/p6

7



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
0
2
2

Review of αs determinations Antonio Pich

0.114 0.116 0.118 0.120

HPQCD

HPQCD

MLMS

JLQCD

PACS-CS

ETM

Static Energy

ΑsHMZL

Figure 2: Lattice determinations of αs(M2
Z). The yellow band shows the average in (5.1).

non-perturbative term, they obtain α
(N f =4)
s (m2

τ) = 0.339± 0.013, in good agreement with the τ

determination in Eq. (4.6). They finally quote αs(M2
Z) = 0.1200± 0.0014 [48]. An analogous

MOM-like study of the triple-gluon vertex with domain-wall fermions and the Iwasaki gauge ac-
tion has been presented by RBC/UKQCD at the last Lattice conference [49], with the preliminary
value αs(M2

Z) = 0.1202±0.0011±0.0002±0.0039±0.0060, where the last and dominant uncer-
tainty accounts for the 5% estimated finite-volume error.

The energy between a static quark and a static antiquark separated by a distance r has been
also calculated in the lattice, with 2+ 1 flavours, combining a tree-level improved gauge action
with a highly-improved staggered quark action [50]. The simulations have been done over a wide
range of gauge couplings, corresponding to a lattice spacing 1.909/r0 ≤ a−1 ≤ 6.991/r0, with
r0 = 0.468±0.004 fm. The short-distance part of the static energy can be computed perturbatively
and it is nowadays known at next-to-next-to-next-to-leading logarithmic (N3LL) accuracy, i.e.,
including terms up to order α4+n

s logn
αs with n ≥ 0 [51 – 54] (the logαs terms are generated by

virtual emissions of ultrasoft gluons). Assuming that QCD perturbation theory (after canceling a
renormalon contribution) is enough to describe the lattice data at distances r < 0.5 r0, a fit to the
lattice results leads to r0 ΛMS = 0.70±0.07, or equivalently, α

(N f =3)
s (1.5 GeV) = 0.326±0.0019

and αs(M2
Z) = 0.1156+0.0021

−0.0022 [55]. Since the present lattice data are not precise enough to profit
from the N3LL calculation, the determination has been obtained at three loop plus leading ultrasoft
logarithmic resummation accuracy.

The results of Refs. [42, 45, 47, 48, 55] are largely independent. Following the prescription
advocated in Ref. [3], we take a weighted average with a correlated error so that the overall χ2

equals unity per degree of freedom. This gives

αs(M2
Z) = 0.1186±0.0007 . (5.1)

8



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
0
2
2

Review of αs determinations Antonio Pich

6. Quarkonium

The bound states of a heavy quark and a heavy antiquark can be rigorously described with
non-relativistic QCD (NRQCD) techniques, through a combined expansion in powers of αs and
the heavy-quark velocity v. The strong coupling can then be extracted from the ratio [56, 57]

Rγ ≡
Γ[ϒ(1S)→ γ +hadrons]

Γ[ϒ(1S)→ hadrons]
= 0.0245±0.0001±0.0013 . (6.1)

Including the color-octet contributions, which are important in the upper end-point region of the
photon spectrum, one gets a good description of the photon energy distribution [57]. In order to
extract αs, a sensible determination of the NRQCD hadronic matrix elements is needed. Using a
combination of lattice and continuum inputs, the most recent analysis obtains [58]

αs(M2
ϒ(1S)) = 0.184+0.015

−0.014 , αs(M2
Z) = 0.119+0.006

−0.005 . (6.2)

Since the accuracy of this determination is only of NLO in αs(m2
b) and v2, it will not be taken into

account in our final average. However, the result nicely agrees with the more precise measurements
performed at other scales.

7. Particle distribution functions

The measured scaling violations in particle distribution functions (PDFs) provide precise deter-
minations of αs, taking advantage of the available deep-inelastic-scattering (DIS) data over a wide
range of energies and, in particular, the accurate data sets obtained by the HERA experiments.

A combined analysis of non-singlet structure functions from DIS experiments [59], based
on NNLO and N3LO QCD predictions, gave αs(M2

Z) = 0.1142± 0.0023, including a theoretical
error of ±0.0008 [3]. This determination neglects possible singlet contributions for x > 0.35,
where the valence approximation is used. More recent analyses take into account both singlet and
non-singlet structure functions, together with Drell-Yan and di-muon data, needed for a correct
description of the sea-quark densities, finding at NNLO the results αs(M2

Z) = 0.1134±0.0011 [60]
and αs(M2

Z) = 0.1158±0.0035 [61].
Global PDF analyses include a much broader set of data from fixed-target experiments, HERA

and the Tevatron. In addition to scaling violations, the determination of the strong coupling ob-
tained in this way exploits also the dependence on αs of the hard-scattering matrix elements of
the different processes analyzed. The inclusion of proton collider data allows for a better con-
trol of the gluon PDF. However, while full NNLO is employed for the structure functions, only
NLO predictions are available for jet production at hadron colliders. The MSTW group finds
αs(M2

Z) = 0.1171±0.0014±0.002 [62], where the last error indicates a conservatively estimated
theoretical uncertainty. If the Tevatron data is removed from the fit, the central value decreases
to αs(M2

Z) = 0.1104; this DIS-only determination implies a gluon PDF incompatible with the
Tevatron data, questioning the accuracy of previous DIS fits. In fact, fixing the high-x gluon pa-
rameters to agree with the global PDF determination, the DIS-only fit gives a much larger value
αs(M2

Z) = 0.1172 [62]. Removing the old (but precise) BCDMS DIS data [63], the result from
the global PDF fit increases to αs(M2

Z) = 0.1181 while the DIS-only fit gives an even larger value
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αs(M2
Z) = 0.1193 [62]. Pinning down the gluon PDF through Tevatron data seems to be crucial for

a reliable αs determination, at the expense of some deterioration in the fit quality of BCDMS data.
More recently, the NNPDF collaboration has performed a global PDF analysis, using neural

networks as unbiased interpolating functions coupled to a Monte Carlo approach, with the result
αs(M2

Z) = 0.1173±0.0011 [64]. Including only DIS data in the fit, they find also a smaller central
value αs(M2

Z) = 0.1166, in line with the MSTW results. They observe that at low αs the DIS
BCDMS data and jet data pull the gluon PDF in opposite directions, so the fit quality can be
improved using DIS data only in a way which is forbidden when jet data are present.

As an educated weighted average of all these determinations, the PDG [3] quotes:

αs(M2
Z) = 0.1151±0.0022 . (7.1)

The strong coupling has also been determined with inclusive jet measurements at HERA, over
a wide range of values of the energy scale. The combined result, αs(M2

Z) = 0.1198±0.0032 [65],
includes a large theoretical uncertainty of ±0.0026. This determination has only a NLO accuracy
and is not included in the average.

8. Jet rates and event shapes in e+e− annihilation

Jet rates have a high sensitivity to αs, which increases with the jet multiplicity n (Rn ∼ αn−2
s ).

Moreover, there are many additional jet observables available, such as a variety of event shapes
and energy correlations. However, the physical description of jets always involves several scales
(Emin, pT , mb . . . ), making necessary a careful resummation of enhanced logarithmic corrections
and a good control of non-perturbative power corrections and hadronization effects. Modern studies
incorporate NNLO corrections [66, 67] and the most recent ones include a matched next-to-leading
logarithmic (NLL) resummation [68, 69]. Using soft-collinear effective theory (SCET) techniques,
this resummation has been achieved up to NNLL for jet broadening [70] and N3LL for thrust [71]
and heavy-jet mass [72].

A NNLO analysis of the 3-jet rate, using ALEPH data collected at LEP between 91 and 209
GeV [73], resulted in αs(M2

Z) = 0.1175± 0.0025 [74]. The 5-jet rates at LEP have been also
analyzed at NLO with the result αs(M2

Z) = 0.1156+0.0041
−0.0034 [77]. More recently, a re-analysis of the

3-jet JADE data, at centre-of-mass energies between 14 and 44 GeV, using NNLO predictions plus
NLL resummation, obtains αs(M2

Z) = 0.1199±0.0060 [75], where the main uncertainty originates
from applying different Monte Carlo models to estimate the transition from partons to hadrons. An
older study of the 4-jet JADE data, at NLO plus NLL, gave αs(M2

Z) = 0.1159±0.0028 [76].
Two analyses of six event-shape variables with LEP data, performed at NNLO plus NLL,

have given the values αs(M2
Z) = 0.1224± 0.0039 [78] and αs(M2

Z) = 0.1189± 0.0043 [79]. In
both cases, the dominant uncertainty is theoretical. A similar event-shape analysis of JADE data
gives αs(M2

Z)= 0.1172±0.0051, where hadronization (±0.0035) and perturbative QCD (±0.0030)
are the largest errors [80]. Including a N3LL resummation into the NNLO predictions, a fit to
the thrust data from ALEPH and OPAL leads to αs(M2

Z) = 0.1172± 0.0022 [71]. Using only
ALEPH data and working also at NNLO plus N3LL, Ref. [72] finds a similar result from thrust
and a larger value from the heavy-jet mass distribution, with a final combined result αs(M2

Z) =

10
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Figure 3: αs(M2
Z) from PDFs (left) and e+e− jets (right). The yellow bands indicate the PDG [3] averages.

0.1193± 0.0027. Ref. [71] includes a ±0.0012 hadronization uncertainty, while hadronization is
neglected in Ref. [72].

In the previous analyses hadronization effects are estimated with Monte Carlo generators,
which were tuned to LEP data. Higher-order perturbative contributions, non-perturbative power
corrections and hadron-mass effects get then unavoidably mixed, which can have a significant
impact on the αs extraction. Using SCET techniques, Refs. [81] incorporate explicitly the leading
non-perturbative power corrections, which are also fitted to the data. They analyse the world data
on thrust distributions at NNLO plus N3LL accuracy, including a sophisticated infrared renormalon
subtraction, obtaining quite low values of the strong coupling. The tail of the thrust distribution
gives αs(M2

Z) = 0.1135±0.0011, while cumulant moments using the full thrust distribution lead to
αs(M2

Z)= 0.1140±0.0015 [81]. In both cases, the inclusion in the fit of an inverse power correction
results in a large decrease of the central value (∆αs ∼−0.009), while the total uncertainty has been
reduced by a factor close to 3 after the renormalon subtraction. The size of subleading power
corrections, not included in the fit, remains to be investigated.

A small αs value with a larger uncertainty, αs(M2
Z) = 0.1131+0.0028

−0.0022, has been also obtained
in another thrust analysis at NNLO plus NNLL [82], where hadronization effects are taken into
account analytically through an effective coupling frozen in the infrared. A previous thrust analysis
within the same hadronization approach at NNLO plus NLL found αs(M2

Z) = 0.1164+0.0034
−0.0032 [83].

This approach has also been applied at NNLO to moments of other event-shape variables with the
result αs(M2

Z) = 0.1153±0.0029 [84].
As an educated average of e+e− results based on NNLO predictions, the PDG quotes [3]

αs(M2
Z) = 0.1172±0.0037 . (8.1)

9. Jets at hadron colliders

The D0 collaboration extracted the strong coupling from the pT dependence of the inclusive jet
cross section in pp̄ collisions at

√
s = 1.96 TeV, which is known to NLO, with the result αs(M2

Z) =

0.1161+0.0041
−0.0048 [85]. The uncertainty is dominated by experimental errors (jet energy calibration, pT

resolution and integrated luminosity). More recently, from a NLO study of jet angular correlations
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Figure 4: Summary of αs(M2
Z) determinations.

over a wide range of momentum transfers from 50 to 400 GeV, D0 obtains αs(M2
Z)= 0.1191+0.0048

−0.0071,
finding good agreement with the predicted QCD running up to 400 GeV [86].

A first NLO determination based on LHC data was performed with the inclusive jet cross
section measured by ATLAS at

√
s = 7 TeV, testing the running of αs up to jet pT of 600 GeV,

with the result αs(M2
Z) = 0.1151+0.0093

−0.0087 [87]. CMS has made public two preliminary results: the
measured ratio of the inclusive 3-jet and 2-jet cross sections at

√
s = 7 TeV, as a function of the

average transverse momentum of the two leading jets up to 1.4 TeV, gives αs(M2
Z) = 0.1143+0.0083

−0.0067
[88], while the comparison of the tt̄ production cross section with approximate NNLO calculations
results in αs(M2

Z) = 0.1178+0.0046
−0.0040 [89].

10. Summary: the world average value of αs

Making a world average over the different determinations of αs is a highly non-trivial task
because systematic uncertainties dominate the most precise measurements. Thus, one relies in
the more or less conservative attitude adopted to estimate the errors of a given determination.
Different levels of theoretical accuracy exist for the different observables analyzed and, moreover,
many theoretical and experimental inputs are highly correlated. Following the procedure suggested
in Refs. [1 – 3], we just combine the pre-averages given in the previous sections for each class
of measurements, which only take into account determinations of at least NNLO accuracy. The
weighted average of the different input values gives the central value, while the uncertainty is
adjusted so that the χ2/dof equals unity. One finds in this way

αs(M2
Z) = 0.1186±0.0007 , (10.1)

which is very close to the value quoted in the 2012 PDG review [3]. As nicely discussed there,
the central value remains stable when removing any one of the five inputs included in this average.
The overall uncertainty is however largely determined by the precise lattice result.
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