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1. Introduction

It is expected that strongly interacting matter undergoes a transition in somertgnme in-
terval from hadron gas to deconfined state also called the quark glusmaI@GP) [1]. Creating
and exploring deconfined medium in the laboratory is the goal of the lageriexental heavy ion
program at RHIC [2] and LHC [3]. Studying hot and dense stronglyraang matter is also the
subject of a large effort in lattice QCD (see Refs. [4, 5] for receniesgs). Early lattice QCD
simulations at non-zero temperature were limited to large quark masses amd lcadtrol over
the discretization errors [6, 7, 8]. During the past seven years cétmsavith the physical strange
quark mass and physical or nearly physical lightd) quark masses have been performed using
improved staggered fermion actions [9, 10, 11, 12, 13, 14, 15, 18,8719], and for several quan-
tities continuum extrapolated results have been obtained. There was adgeg¥ in lattice QCD
calculations at non-zero temperature using other fermion formulations, Ipaffison fermions
[20, 21, 22], Domain-Wall fermions [23] and overlap fermions [24].eThter two formulations
preserve the chiral symmetry of continuum QCD. However, due to mucarlagmputational costs
of these formulations the corresponding results are far less extensive.

To get reliable predictions from lattice QCD the lattice spaarsihould be sufficiently small
relative to the typical QCD scale, i.é\qgcpa < 1. For staggered fermions, discretization errors
go like & ((a/\qcp)?) but discretization errors due to flavor symmetry breaking turn out to be quite
large numerically, and dominate the cutoff dependence of thermodynamititipsaat low tem-
peratures. To reduce these errors one has to use improved stafgyerah actions with so-called
fat links [25]. At high temperature the dominant discretization errors caora the lattice distor-
tions of the quark dispersion relation and go lie)?, and therefore could be very large. Thus,
it is important to use improved discretization schemes, which reduce or elimireste discretiza-
tion errors. Staggered fermion actions used in numerical calculations liypitglement some
version of fat links as well as improvement of quark dispersion relatiehama referred to ap4,
asqgtad HISQandstout Independently of specific improvement all lattice results eventually must
be extrapolated to the continuum limit.

In this contribution | am going to discuss lattice QCD calculations on the equatistate,
study of deconfinement aspects of the QCD transition, including coloesicrg and fluctuations
of conserved charges and determination of the chiral transition temperatwill mostly discuss
lattice results obtained with staggered quark formulation; where appropesués obtained using
other actions will be highlighted.

2. Equation of State

The equation of state has been calculated using different improved stddgemion actions
p4, asqgtad stoutandHISQ. In the lattice calculations of the equation of state and many other
guantities the temperature is varied by varying the lattice spacing at fixed oathe temporal
extentN;. The temperatur& is given by the lattice spacing and the temporal extént,1/(N;a).
Therefore taking the continuum limit correspondsNip— oo at the fixed physical volume. The
calculation of thermodynamic observables proceeds through the calcutdtitwe trace of the
energy momentum tensag,— 3p, also known as the trace anomaly or the interaction measure.
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This is due to the fact that this quantity can be expressed in terms of expeatali@s of local
gluonic and fermionic operators, (see e.g. Ref. [15]). Differentttwelynamic observables can be
obtained through integration of the trace anomal¥he pressure can be written as

p(T) p(To)  (TdT

=k Tg‘ = i ﬁ(£—3p). (2.2)

The lower integration limifTp is chosen such that the pressure is exponentially small there. Fur-
thermore, the entropy density can be writtensas (¢ + p)/T. Since the interaction measure is
the basic thermodynamic observable in the lattice calculations it is worth to digsyssperties
more in detail. In Fig. 1 (left panel) | show the results of the calculation witredhffit improved
actions. The calculation witp4 andasqgtadactions have been performed blp = 8 lattices and
light quark massem = mg/10, with ms being the physical strange quark mass [13, 15]. These
light quark masses correspond to the pion masses slightly above 200 Me&/¢ortinuum limit.
For this value olN; the above deviation from the physical quark mass plays little role [14, 26]. T
N; = 12 asqtad calculations have been performedror= ms/20 [27]. Calculations wittHISQ
action have been performed filf = 4, 6, 8, 10 and 12 fom = ms/20 corresponding to the pion
mass of 160 MeV in the continuum limit [27]. A subset of these results is showig. 1. Finally,
calculation of the trace anomaly and the equation of state was performegtaittaction using
N; =4, 6, 8, 10 and 12 and physical light quark masses [18]. Using the lattice dataNfea®b, 8
and 10 a continuum estimate for different quantities was given [18]. Tthesiction measure shows
a rapid rise in the transition region and after reaching a peak at temperatfuadout 200 MeV
decreases. At low temperatures lattice data obtainedkMi80Q action and stout action agree with
each other. We also compare the lattice results with hadron resonancdR@3 thodel calcu-
lations which seems to agree well withSQ andstoutresults forT < 150 MeV. Cutoff effects
(i.e. N; dependence) appears to be the strongest around the peak regeyndédrease at high
temperatures and dt > 400 MeV all lattice results agree with each other. At low temperature the
cutoff effects related to flavor symmetry breaking are very largepfbandasqtadactions. Due
to these large cutoff effects thé, = 8 p4 andasqgtaddata are below the hadron resonance gas
model. Taking into account the distortions of the hadron spectrum due tw #ggnmetry breaking
in hadron resonance gas calculations leads to good agreement of HRGwitbdbe lattice [28].
Since at high temperatures the effects of flavor symmetry breaking in tesyyeeand the interac-
tion measure are small, the reductioreir 3p at low temperatures must be compensated (at least
partly) by a larger value at intermediate temperatures. Thus, the Nyrdependence of the peak
height ofe — 3pis related to the large flavor symmetry breaking effectg#andasqtadactions.

In Fig. 1| also show the entropy density divided by the corresponding igies value and
compare the lattice results with the resummed perturbative calculations [2%30jell as with
the predictions from AdS/CFT correspondence for the strongly coueuine [31]. The later
is considerably below the lattice results. Note that the pressure, the esemgity and the trace
anomaly have also been recently discussed in the framework of resummadbatve calculations
which seem to agree with lattice data quite well at high temperatures[32].iffeéedces between
thestoutaction and thg4 andasqtadactions for the trace anomaly translates into the differences

1A somewhat different approach was used in Ref. [18]
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Figure 1: The interaction measure (left) and the entropy densityh{Jigs function of the temperature

calculated with improved staggered fermion actions. Thehdéd line in the left panel shows the HRG result.
The band in the right panel shows the resummed perturbasudty while the solid line is the expectations
based on the strongly coupled limit.

in the pressure and the entropy density. In the high temperature regionttbpyedensity obtained
with stout action is 10% smaller than the entropy density obtained pdithndasqtadactions.

3. Taylor expansion of the pressure and fluctuations of conseed charges

Due to the infamous sign problem lattice QCD Monte-Carlo simulations are neti@at
non-zero quark chemical potentials. The pressure and other quantities-aero chemical po-
tentials, however, can be evaluated using Taylor expansion. The Tepansion can be set up
in terms of the quark chemical potentiglg, g and us, or in terms of the chemical potentials
corresponding to baryon numbBy electric charg& and strangenessof hadrons

T4 - \%'”Z(T’““’“d’“g =2 i!jllk! XiuiSS(%y (%)J (%)k
uds 0i+j+kp/T4

XK = 31y T)10 (1ta/T)10 (s TR (3.1)

5= g o - 3 () (4 ()

BOS di+j+kp/-|-4
Xk = (/T )19 (Ho/T)1d (Hs/T)K

(3.2)

Using Taylor expansion method the equation of state has been calculasddtirchemical po-
tential in the continuum limit [33]. Earlier results at non-zero lattice spacivg baen reported in
Refs. [34, 35]. While Taylor expansion can be used to study the phgsiusn-zero baryon den-
sity, the expansion coefficients are interesting on their own right as tleenekated to fluctuations
and correlations of conserved charges. As will become clear later itiatis and correlations of
conserved charges are good probes of deconfinement. Fluctuaticosserved charges are also
useful for determining the freeze-out conditions in heavy ion experinjdéts
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Figure 2: The fluctuations of baryon number (left), electric charged@te) and strangeness (right) as
function of the temperature calculated withSQand stout action in the continuum limit and normalized by
the corresponding ideal quark gas vaIy@sSB. The solid black curves correspond to HRG predictions.

The diagonal expansion coefficients are related to second and higher ftuctuations of
conserved charges, e.g.

1
X3 = W“\@
XS = s (N -30)7) 33)

while the off-diagonal expansion coefficients are related to correlaioreng conserved charges,
e.g.

1
X3 = ﬁ(NxNY)- (3.4)

Second order fluctuations have been studied with improved staggereaisaati®efs. [15, 17, 37].
Recently continuum results have been obtained for second order fiocwmaf baryon number,
electric charge and strangeness usshgut and HISQ actions [38, 39] which are shown in Fig.
2. The lattice results are also compared with HRG model. As one can see fdigure at low
temperatures the lattice data are described well by HRG model indicating tltrttieant degrees
of freedom in that temperature range are hadronic. Deconfinimentrnsasegrapid increase of the
fluctuations forT > 150 MeV, which eventually reach values that are close to the expectafions o
weakly interacting quark gas. In other words, the fluctuations indicatekgiegrees of freedom
at high temperatures. The lattice results obtained WitBQ and $out action agree well in the
continuum limit, except for temperatures around 200 MeV where some gaocees are observed
in the baryon and electric charge fluctuations. Another way to study fieeoment is to consider
correlations of conserved charges. These correlations are véeyedit for hadron gas and quark
gas. As an example let us examine the strangeness-baryon numbdatmorrelt is convenient
to normalize this quantity as followSgs = —3)({‘15/)(5. At high temperatures where strangeness
is carried by s-quarks this quantity should be close to one. At low tempesatn the other
hand strange baryons are responsible for strangeness-bamyetations. In Fig. 3(left) | show
continuum results fo€gs obtained withstout [38] andHISQ [39] actions. At low temperatures
the lattice results are described by HRG model, while at high temperaturesréhelpse to one as
expected for quark gas.

Fourth order fluctuations for baryon number, electric charges andgareess have been stud-
ied usingp4 [37] andHISQ [40] actions. Cutoff effects are quite large fp4 action in the low
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Figure 3: Baryon number-strangeness correlat@ys (left) and fourth order fluctuations of baryon number
and electric charge foHISQ action normalized by the corresponding ideal quark gasevali function
of T/T. (right). The lines correspond to the prediction of the hadresonance gas model. Open (filled)
diamonds in the right panel correspond\p= 4 p4 results for)(4Q x5).

temperature and the transition regions. These large cutoff effects alsib iremuch larger value
of the transition temperature than obtained vatbutandHISQ actions [10]. Calculations of the
fourth and higher order fluctuations are quite demanding computationallyoaridis reason no
continuum results have been obtained yet. The lattice results obtained l@taction forN; = 6
and 8 are shown in Fig. 3 as function of the temperature in units of the ctaraition tempera-
ture T, = 154 MeV (see below) and also compared with earlier results obtainedodiétttion and

N; = 4. For thep4 action we use the value of the transition temperaiire 204 MeV determined

in Ref. [10] forN; = 4. To reduce the cutoff effects the lattice spacing infH&Q calculations
was set by the kaon decay constént At high temperatures the fourth order fluctuations are close
to the values corresponding to non-interacting quark gas. At low tempesatiie fourth order
baryon number fluctuations are reasonably well described by hadsonance gas. This is not the
case, however, for the electric charge. One possible reason foistgréement between the lattice
and HRG model in this case could be the large cutoff effects in the pion sdglextric charge
fluctuations are very sensitive to the pion sector, which is largely distoretthe lattice even if
HISQ or stoutaction is used. These distortions correspond effectively to a largerrpass that
would explain why the lattice data are below the HRG expectations. Fourthfardeeiations have

a maximum in the transition region. Interestingly enough the position of the maximamTnis
roughly the same for thelISQ and p4 actions. The height of the peak, however, is significantly
larger for thexj? whenp4 action is used.

Second and fourth order light and strange quark number fluctuatidngrate mperatures have
been studied on the lattice in Refs. [38, 41] and compared with resummedyaeicte calculations
[42, 43]. The resummed perturbative calculations seem to describe the lddtia quite well at
T > 300 MeV.

4. Deconfinement : color screening

One of the most prominent feature of the quark gluon plasma is the preskectt®moelectric
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(Debye) screening. The easiest way to study chromoelectric scresrimgalculate the Polyakov
loop. The Polyakov loop is an order parameter for the deconfinemertiticanin pure gauge
theory, which is governed b¥(N) symmetry. For QCD this symmetry is explicitly broken by
dynamical quarks. There is no obvious reason for the Polyakov loop sebsitive to the singular
behavior close to the chiral limit, although speculations along these lines bawatade [45]. The
Polyakov loop is related to the screening properties of the medium and thesdofthement. After
proper renormalization, the square of the Polyakov loop characteriedsriy distance behavior
of the static quark anti-quark free energy; it gives the excess in fieegg needed to screen two
well-separated color charges. The renormalized Polyakov loop, cedwda lattices with temporal
extentN¢, is obtained from the bare Polyakov

1 N;—1
Len(T) =208 Loa() = 2B)" (TTWER) ). W) = [] ookl (4.2
X=0

whereUp = exp(igafy) denotes the temporal gauge link azig) is the renormalization constant
determined from th@ = O static potential [11]. Continuum results for the renormalized Polyakov
loop have been obtained wisthout[17] andHISQactions [48]. These are shown in Fig. 4 together
with N; = 6 HISQresults [19]. One can see a good agreement betweestidhtandH 1SQresults.
| also compare the 2+1 flavor QCD results with the corresponding resultgéngauge theory [46,
47] as well as with the prediction of non-interacting gas of static-light(seahgdrons [48, 49].
We see that in the vicinity of the transition temperature the behavior of thematiaed Polyakov
loop in QCD and in the pure gauge theory is quite different. The calculatibp@based on non-
interacting static-light hadron gas can explain the lattice dat& far140 MeV. The renormalized
Polyakov loop has also been calculated using lattice fermion formulations otreistahggered,
namely the Wilson formulation [20] and the overlap formulation [24]. Thesenigations are
considerably more expensive computationally than the staggered formuéaitbtherefore the
calculations have been performed at unphysical pion mass. The rebtdisen using Wilson
action and overlap action for the Polyakov loop agree very well with theystagl fermion results
at the same value of the pion masses [20, 24].

Further insight on chromoelectric screening can be gained by studyirgirtblet free energy
of static quark anti-quark pair (for reviews on this see Ref. [50, Sfjich is expressed in terms
of the correlation function of temporal Wilson lines in Coulomb gauge

exp(—F(r,T)/T) = %mwa)w* (0)). (4.2)

Instead of using the Coulomb gauge the singlet free energy can be di@figauge invariant
manner by inserting a spatial gauge connection between the two Wilson ligiegy dlich definition
the singlet free energy has been calculate®W{2) gauge theory [52]. It has been found that
the singlet free energy calculated this way is close to the result obtaineduinr@o gauge [52].
The singlet free energy turned out to be useful to study quarkonidngrat high temperatures
in potential models (see e.g. Ref. [44] and references therein). ltaplgears naturally in the
perturbative calculations of the Polyakov loop correlators at shortrais&[53].

The singlet free energy has been recently calculated in 2+1 flavor Q@DHASQ action on
243 x 6 and 16 x 4 lattices [54]. The numerical results are shown in Fig. 4. At short disstie
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Figure 4. Left: The renormalized Polyakov loop as function of the temgpure in 2+1 flavor QCD and
pure gauge theory. Right: The singlet free energy as funcaifdhe distance at different temperature calcu-
lated withHISQ action [54]. The solid line in the left panel correspondstttis-ligh(strange) hadron gas
prediction forLen (See text). The dashed line in the right panel isThe 0 potential [19].

singlet free energy is temperature independent and coincides with théerasperature potential.
In purely gluonic theory the free energy grows linearly with the separ&i@ween the static quark
and anti-quark in the confined phase. In presence of dynamical gjtrekree energy is saturated
at some finite value at distances of about 1 fm due to string breaking (@e&ef. [50]). This
is also seen in Fig. 4. Above the deconfinement temperature the singlernfeegy is exponen-
tially screened at sufficiently large distances [46, 47] with the screenirss pr@portional to the
temperature , i.e.

FL(,T) = Fu(T) — =

; exp(—mp(T)r), mp ~ T. (4.3)

The lattice data for the singlet free energy are consistent wit thesetexipes forr > 0.8/T.

Let me finally note that contrary to the electro magnetic plasma the static chormetitagn
fields are screened in QGP. This is due to the fact that unlike photonssghteract with each other
(the stress tensor is non-linear in QCD). Magnetic screening is nonkpatitte, i.e. it does not
appear at any finite order of pertubation theory. In lattice calculatiorsnotimagnetic screening
is studied either in terms of spatial Wilson loops [55] or in terms of spatial gluopggators
[56, 57, 58]. The numerical results obtained so far show that the lecgth eelated to magnetic
screening is larger than the one related to electric screening.

5. Chrial transition

The Lagrangian of QCD has an approxim8&teh (3) chiral symmetry. This symmetry is bro-
ken in the vacuum. The chiral symmetry breaking is signaled by non-zgreceation value of
the quark or chiral condensat@yy) # 0 in the massless limit. This symmetry is expected to be
restored at high temperatures and the quark condensate vanishes.isTae explicit breaking of
the chiral symmetry by the non-zero valuesuodl ands quark masses. While due to the relatively
large strange quark massy~ 100 MeV)SU,(3) may not be a very good symmetry its subgroup
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SUx(2) remains a very good symmetry and is relevant for the discussion of the finifetature
transition in QCD. If the relevant symmetry 8 (2) the chiral transition is expected to be second
order for massless lightu(andd) quarks belonging to th®(4) universality class. Recent calcu-
lations with p4 action support this pictures [59]. This also means that for non-zero digark
masses the transition must be a crossover. The crossover nature @rtbigidn is supported by
calculations in Ref. [60]. Thela(1) symmetry is explicitly broken in the vacuum by the anomaly
but it is expected to be effectively restored at high temperatures apenturbative vacuum fluc-
tuations responsible for its breaking are suppressed at high tempsrafureUa(1) symmetry is
restored at the same temperature as3bjg(2) symmetry the transition could be first order [61].
Recent calculations with staggered [62] as well as with domain wall fermi@Blssuggest that
Ua(1) symmetry gets effectively restored at temperature that is significantly higaerthe chiral
transition temperature.

For massless quark the chiral condensate vanishes at the critical téine&faand is the or-
der parameter. Therefore in the lattice studies one calculates the chidartgate and its derivative
with respect to the quark mass called the chiral susceptibility. For the seyfgrmion formula-
tion most commonly used in the lattice calculations at non-zero temperature thasitigs can
be written as follows:

_ 11

(YY)gx = ZNTNTTMD%)’ (5.1)
Xmq(T) = <Lg:f;> = Xqdisc+ Xg.con d=1,5, (5.2)

where the subscript= 1 andx = 0 will denote the expectation value at finite and zero temperature,
respectively. Furthermor®q = mq- 1+ D is the fermion matrix in the canonical normalization and
ns = 2 and 1 for light and strange quark. In Eq. (5.2) we made explicit thaalchirsceptibility

is the sum of connected and disconnected Feynman diagrams. The @istazhand connected
contributions can be written as

2

Xq,disc = 16':;;Nr {((TFD TrD } (53)
Xacon = 2 TTY (D (6,005 (0.X)) . q=1.5 (5.4)

The disconnected part of the light quark susceptibility describes the dlimhs in the light quark
condensate and is directly analogous to the fluctuations in the order parahateO(N) spin
model. The second ternx{con) arises from the explicit quark mass dependence of the chiral
condensate and is the expectation value of the volume integral of the tiomdianction of the
(isovector) scalar operatgry. Let me note that in the massless limit onfysisc diverges.

5.1 The temperature dependence of the chiral condensate

The chiral condensate needs a multiplicative, and also an additive relimation if the quark
mass is non-zero. Therefore the subtracted chiral condensate idem@us

<’-ﬁ’-.u>l,r - %<'ﬁw>s,r

A1) = g o ™ (Geo

(5.5)
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Figure 5: The subtracted chiral condensate calculated WitBQ action in the continuum limit compared
to the renormalized Polyakov loop (left) and light quark raenfluctuation (right). The continuum results
for A s andLren have been taken from Ref. [48], while the continuum resuﬂt3(§‘ have been taken from
Ref. [39].

In Fig. 5 | show continuum results fak s calculated withHISQ action and compared to the
renormalized Polyakov loop and baryon number fluctuation previouslysésd in relation to the
deconfining transition. The rapid increase)@ happens roughly in the same temperature interval
whereA s shows a rapid decrease, while it is difficult to make similar statements,dpdue to

its very smooth behavior. However, it is clear from Fig. 5 that, is very far from unity for
temperatures whem s is very small.

Another way to get rid of the multiplicative and additive renormalization is to sbthe zero
temperature condensate and multiply the difference by the strange quask ireasconsider the
following quantity

AR = d+2ma (PP g — (PWP)qo), a=1.s. (5.6)

The factorr‘l1 was introduce to make the combination dimensionless. Hdgethe scale parameter
defined from the zero temperature static potential [19]. It is conveniatfitdose the normalization
constant to be the light quark condensatenfpe= 0 multiplied bymsr‘l‘. In Fig. 6 the renormalized
quark condensate is shown as function of the temperaturd 80 andstout actions. We see a
crossover behavior for temperature(@0— 160) MeV, whereA,R drops by 50%. The difference
between thestoutand HISQ results is a quark mass effect. Calculations HISQ action were
performed form;; = 160 MeV, while thestoutcalculations were done for the physical quark mass.
For a direct comparison withtoutresults, we extrapolate thelSQ data in the light quark mass
and also take care of the residual cutoff dependence irltB&€ data. This was done in Ref. [19]
and the results are shown in the figure as black diamonds demonstratind agreement between
HISQandstoutresults. Contrary té\R the renormalized strange quark condengdtshows only
a gradual decrease over a wide temperature interval dropping by B8f&significantly higher
temperatures of about 190 MeV. The subtracted chiral condensatddtaleen calculated using
Wilson and overlap formulations [20, 24]. These calculations show ggreEkanent with staggered
results at the corresponding values of the pion mass.

10
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Figure 6: The renormalized chiral condensﬁ!{%for theHISQaction withm /ms = 0.05 is compared to the
stoutdata. In the right panel, we show the renormalized strangekqrondensatAR for the HISQaction.

5.2 O(N) scaling and the transition temperature

In the vicinity of the chiral phase transition, the free energy density mayjessed as a sum
of a singular and a regular parts,

T

Heret andh are dimensionless couplings that control deviations from criticality. Theyelated
to the temperatur@ and the light quark mass as

1T-TO 1
=17l hoZp o H=T (5.8)

t—
to T2 ho ms

whereT? denotes the chiral phase transition temperatuge the transition temperature dt= 0.
The scaling variables h are normalized by two parametdgsandhg, which are unique to QCD
and similar to the low energy constants in the chiral Lagrangian. Thesetodssl determined
together withT?. In the continuum limit, all three parameters are uniquely defined, but demen
the value of the strange quark mass.

The singular contribution to the free energy density is a homogeneous faraftithe two
variableg andh. Its invariance under scale transformations can be used to expressringdéa
single scaling variable

YRV 1 A LGN B S A 5.9
tp TO \H n TO \H '

wheref3 andd are the critical exponents of th@(N) universality class andy = to/hcl)/ﬁé. Thus,
the dimensionless free energy dendity: f /T4 can be written as

f(T,my,ms) = Y08 (2) + freg(T,H, M), (5.10)

where f; is the universal scaling function and the regular teftgg gives rise to scaling violations.
This regular term can be expanded in a Taylor series ar¢uhg= (0,0).

11
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It should be noted that the reduced temperaturey depend on other couplings in the QCD
Lagrangian which do not explicitly break chiral symmetry. In particularepends on light and
strange quark chemical potentialg, which in leading order enter only quadratically,

T-T2 Hq i Ps
t= to( T +Z;<q( )+K5?? (5.11)

The transition temperature can be defined as peaks in susceptibilitiesnsedpactions) that
are second derivatives of the free energy density with respect tearglparameters. Since there
are two relevant parameters we can define three susceptibilities:

02f 02f 02f

ﬂ, Xt = M7 Xt = e (5.12)

Xm) =
Thus three different pseudo-critical temperatufgs, T;; andT;; can be defined. In the vicinity
of the critical point the behavior of these susceptibilities is controlled by thréeersal scaling
function that can be derived frorfy. In the chiral limitTy) =Ty = Tyt = TCO. There is, however,
an additional complication foD(N) universality class: whilgy andx;, diverge at the critical
point form — 0
Xt ~my 7L g~ mPYPR (5.13)

Xt is finite becauser < 0 for O(N) models (xi+ ~ [t|”® ). Therefore, one has to consider the
third derivative off with respect td :

a3f
FTER
In the vicinity of the critical point the derivatives with respecttcan be estimated by taking
the derivatives with respect 1@2 I.e. the response functiong andy; «; are identical to the second
Taylor expansion coefficient of the quark condensate and the six¢h expansion coefficient to the
pressure, respectively. The former controls the curvature of theitimmtemperature as function of
the quark chemical potential, and was studied fap4 action usind\N; = 4 and 8 lattices [63]. The
later corresponds to the sixth order quark number fluctuation which is delatbe deconfinement
aspects of the transition. The fact that this quantity is sensitive to the clyinanuics points to
a relation between deconfining and chiral aspects of the transition. Imlbeiing | discuss the
determination of the transition temperature defined as peak positigqof.e. Tc = Tm,.

Xttt = (5.14)

5.3 Determination of the transition temperature

The O(N) scaling described in the above subsection can be used to determine te-pseu
critical temperature of the chiral transition. For the study of @(&) scaling it is convenient to
consider the dimensionless order parameter

gy
< T4>' . (5.15)

The subscript "b" refers to the fact that this is a bare quantity since iévedUV divergence is
not removed. From the point of view of the scaling analysis this divertgnt is just a regular

Mp = mg

12
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contribution. For sufficiently small quark mass and in the vicinity of the transiggion we can
write
Mp(T,H) = h'/°fg(t/hP®) + fiy eg(T,H). (5.16)

Here fg(2) is the scaling function related tih and was calculated fad(2) andO(4) spin models
[64, 65, 66]. The regular contribution can be parametrized as [19]

fM,reg(TaH) = at(T)H
_ 70 i N
— <a0+a1T Te +ap <T TC) )H. (5.17)

T2 T9
Then we have the following behavior for the light chiral susceptibility

Xmi _ T2/ 1 451 0 fm.reg(T,H)
T2 mg (hoh fX(Z)+ oH )
with f,(2) _z

B

One then performs a simultaneous fit to the lattice dataMigand X, treating T2, to, ho, @, a1
anday as fit parameters [19]. This gives a good description of the quark nmesseanperature
dependence gfm, and allows to determine accurately the peak positiox,in Using this scaling
analysisT; has been determined fasqtadandHI1SQactions for differentN;. Having determined
T, for HISQ andasqtadaction for eachiN; a combined continuum extrapolation was performed
using different assumption about tNe dependence df; which resulted in the value [19]:

[fa(2) — - f6(2)]. (5.18)

_1
~ 3

Te = (159+9) MeV. (5.19)

The analysis also demonstrated thHISQ and asgtadaction give consistent results in the con-
tinuum limit. The Budapest-Wuppertal collaboration fouhd= 147(2)(3)MeV, 1573)(3)MeV
and 15%3)(3)MeV defined as peak position in the chiral susceptibility, inflection points gand
AR respectively [17]. These agree with the above value within errors. pElad position inxgisc
calculated using Domain Wall Fermions is also consistent witiighalue in Eq. (5.19).

6. Conclusions

In recent years significant progress has been made in lattice QCD ¢&loslat non-zero tem-
perature. Chiral and deconfining aspects of the QCD transition havedbedied using improved
staggered quark formulation allowing to control discretization effects. Syumatities have been
calculated at small baryon density using Taylor expansion in chemicaltd$enAt sufficiently
low temperatures lattice results can be understood in terms of hadron mesages model, while
at high temperatures resummed perturbative calculations describe the lataceuite well. For
several quantities it has been shown that in the continuum limit differentedization schemes,
including discretizations other than staggered, give consistent resuftsrticular, agreement has
been reached on the value of the chiral transition temperature. There disddjreement in the
lattice calculation of the equation of state.

13
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