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1. The effective string picture of the confining flux tube

The confining vacuum of gauge theories in the continuum limit is in a rough phase. This
means in particular that long color flux tubes joining quark sources behave as string-like objects
described in the far infrared [1] by two-dimensional massless free fields X i(ξ0,ξ1) (i = 1, . . .D−2).
In a planar Wilson loop these describe the transverse displacements as functions of the world-sheet
coordinates, labelled by ξα (α = 0,1). The X i’s can also be seen as the Nambu-Goldstone modes
of the spontaneously broken translation invariance in the transverse directions [2]. The IR limit of
the string-like action is

S0 = c0

∫
d2

ξ
1
2
(∂αX ·∂ αX + . . .) (1.1)

where the ellipses stand for interaction terms. these are polynomials in the derivative of X i that
will be specified below; they become important at intermediate distances. Early lattice calculations
on fluid interfaces [3] suggested that the first correction to the Gaussian action was precisely the
fourth-order term generated by the expansion of Nambu-Goto (NG) action in the number of deriva-
tives. Note that X i’s do not have the canonical dimension of the free bosonic fields, owing to their
significance of transverse displacements , then c0 is a dimensionful physical constant that cannot
be reabsorbed in a redefinition of X i’s. It can be evaluated by measuring the mean square width of
the flux tube as a function of the interquark distance [4]. In the NG action c0 coincides with the
string tension σ and this has been confirmed in numerical evaluations of the string width in various
abelian [5, 6] and non abelian [7, 8] gauge models. Numerical calculations of the energy spectrum
of long closed flux tubes point increasingly to the NG string as the basic ingredient for describing
the string-like degrees of freedom in confining gauge theories [9].

In order to understand the theoretical motivation of the special role of the NG action let us write
the first few general terms of the string action allowed by the rotation and translation invariance
SO(2)⊗ IO(D−2) in the (ξ0,ξ1) plane and in the D−2 transverse directions. In a planar Wilson
loop encircling a planar surface of area A we are left with the following expansion in the number
of derivatives [2, 10]

S[X i] =−σ A− c0

∫
d2

ξ

{1
2
(∂αX ·∂ αX) [free string limit]

+ c2(∂αX ·∂ αX)2 + c3(∂αX ·∂β X)(∂ αX ·∂ β X) [first non−Gaussian correction]

+ c4(∂αX ·∂ αX)3 + c5(∂αX ·∂β X)2(∂γX ·∂ γX) [second non−Gaussian corr.]

+ c6(∂α∂β X ·∂ α
∂

β X)(∂γX ·∂ γX) [first term different from the NG− string]

+O(∂ 8X4)
}
+boundary terms+ . . .

(1.2)

This action is written in the transverse or static gauge, where the only degrees of freedom are
the physical ones. In 2004 Lüscher and Weisz [11] noted that comparison of the string partition
function on a cylinder (Polyakov correlator) with the sum over closed string states in a Lorentz
invariant theory yields strong constraints (open-closed string duality). They obtained, in particular,

(D−2)c2 + c3 =
D−4

8
, (1.3)

and c0 = σ . For D = 3 there is only one fourth-order invariant and the above condition fixes
uniquely the coefficient to be the one of the expansion of the NG action.
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As an aside, it is amusing to observe that if we assume that the ci’s do not depend on D and
use D as a free parameter we get from (1.3)

c2 + c3 =−
1
8
. (1.4)

The last equation was obtained in [12] by generalizing the Lüscher-Weisz argument to closed
strings. Together the last two equations give

c2 =
1
8

; c3 =−
1
4
, (1.5)

which coincide with the first coefficients of the expansion of the NG action in any space-time
dimensions. It has been observed that an essential ingredient of the Lüscher-Weisz argument is
the Lorentz invariance of the bulk space-time [13, 12]. It was subsequently argued [14] that the
confining string action could be regarded as the effective action obtained from the underlying Yang-
Mills theory of the confining vacuum in presence of a large Wilson loop by integrating out all
the massive degrees of freedom. This integration does not spoil the original Poincaré invariance
of the underlying gauge theory which is no longer manifest, but is realized through non-linear
transformations of the string-like degrees of freedom encoded in the X i’s. In particular the effective
string action (1.2) should be invariant under the infinitesimal Lorentz transformation in the plane
(α, j)

δX i =−ε
α j

δ
i j

ξα − ε
α jX j∂αX i . (1.6)

The recipe to write down Eq.(1.6) is very simple: the standard linear transformation which mixes
coordinates and fields (see for instance figure 1) is followed by a reparametrization (the second
term of (1.6)) by which the static gauge is restored. It is straightforward to verify that invariance

P(0) P(R)

P(R)

ε

*

’

string ξ
1

X i

Figure 1: An infinitesimal rotation of a Polyakov loop correlator around the ξ0 axis

under this transformation implies (1.5) and it is not difficult to argue that the whole NG action can
be generated this way [14]. A general method that can be applied also in the construction of the
effective action of more general extended object as the D-branes is to explicitly write and solve the
recurrence relations induced by the request of invariance under (1.6) [15]. For instance, it easy to
see that all the terms generated by c2 and c3 terms have the form

I0 =
∞

∑
m=0

∞

∑
n=1

cn,m(∂αX ·∂ αX)n[(∂αX ·∂ β X)(∂β X ·∂ αX)]m , (1.7)

and the invariance under (1.6) implies [16, 17]

(n+1)cn+1,m +

(
n
2
+m− 1

2

)
cn,m +(m+1)cn−1,m+1 = 0 , (1.8)
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and

(n+2)cn+2,m +

(
m− 1

2

)
cn+1,m− (m+1)cn−1,m+1 = 0 . (1.9)

The Lorentz transformation (1.6) acts only on terms with m ≥ 0 and n > 0. If we extend the
recursion to include also the coefficient c0,0 = −σ , corresponding to the first term of (1.2), and
solve these recurrence relations, we are left with [16, 17]

SNG =−σ

√
1+(∂αX ·∂ αX)+

1
2
(∂αX ·∂ αX)2− 1

2
(∂αX ·∂ β X)(∂β X ·∂ αX) , (1.10)

which is precisely the NG action. If we had chosen a coefficient c0,0 6= −σ we had obtained the
non-reparametrization invariant contribution (σ + c0,0)

∫
d2ξ .

At this point the question naturally arises: what is the first correction to NG action? It has been
shown that the term associated with c6 in (1.2) is actually absent, as it generates a total derivative
[16, 17], and the first non vanishing correction has to be looked for in the boundary terms. Indeed
quantum field theories on space-time manifolds with boundaries require, in general, the inclusion
in the action of contributions localized at the boundary. The first non trivial term of this kind,
proposed in [10], is, in the case in which the boundary is a Polyakov loop along the 0 axis,

S1 =
a
4

∫
dξ0 ∂1X ·∂1X , (1.11)

where a is a free parameter of dimension [length]; its contribution to the static potential is−a (D−2)π
24r2 .

It was subsequently observed that this term does not fulfill the requirements of the open-closed
string duality [11]. From the point of view of the Lorentz symmetry, if we apply (1.6) to S1 we get
at once

δS1 =−
a
4

∫
ε

1idξ0 ∂1Xi +higher order terms 6= 0 . (1.12)

thus such a boundary term breaks explicitly the Lorentz invariance, hence it should be excluded
from the boundary action.

The first boundary term compatible with Lorentz invariance is

Sboundary = b
∫

dξ0 ∂1∂0X ·∂1∂0X + . . . (1.13)

where now the free parameter b has dimension [(length)3]. The requirement of Lorentz invariance
generates an infinite sequence of terms of the form

Sboundary =
∫

dξ0 ∑
k=0

[
bk∂1∂0X ·∂1∂0X(∂1X ·∂1X)k + ck(∂1∂0X ·∂1X)2(∂1X ·∂1X)k

]
. (1.14)

and the coefficients should obey the recurrence relations

bn +bn+1 = 0 , (n+1)cn +ncn+1 = 0 , bn + cn + cn+1 = 0 (1.15)

whose solution gives

Sboundary = b
∫

dξ0

[
∂1∂0X ·∂1∂0X
1+∂1X ·∂ 1X

+
(∂1∂0X ·∂1X)2

(1+∂1X ·∂ 1X)2

]
. (1.16)
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It is important to note that all terms appearing in (1.14) are characterized by the fact that the
difference between the number of derivative and the number of fields is constant and equal to
2. This difference is called scaling and the expression (1.16) just constructed is the only Lorentz
invariant of scaling 2. It is possible to show that there are no invariant of odd scaling [18]. It is
easy to construct in this way boundary terms of higher scaling. For instance, there are two different
Lorentz invariants of scaling four. One is simply the square of the boundary Lagrangian (1.16), the
other is

L4 =
∂ 2

0 ∂1X ·∂ 2
0 ∂1X

1+∂1X ·∂1X
−
(
∂ 2

0 ∂1X ·∂1X
)2

+4
(
∂ 2

0 ∂1X ·∂0∂1X
)
(∂0∂1X ·∂1X)

(1+∂1X ·∂1X)2

+4
(∂0∂1X ·∂1X)2 [

∂1X ·∂ 2
0 ∂1X +∂0∂1X ·∂0∂1X

]
(1+∂1X ·∂1X)3 −4

(∂1X ·∂0∂1X)4

(1+∂1X ·∂1X)4 .

(1.17)

It is also possible to write down the Lorentz invariants of higher scaling [18]. Of course the con-
tribution of these boundary terms to the vacuum expectation value of Wilson loops or Polyakov
correlators is too small to be of any practical utility in current numerical simulations.

2. Quantum effects of the boundary action

The boundary action (1.16) contributes to the Polyakov line correlator and to the Wilson loop
through

〈Sboundary〉=
1
Z

∫
DX SboundaryeS (2.1)

where Z is the partition function of the effective string. The lowest order contribution to the
Polyakov line correlator (corresponding to the cylinder geometry of the world-sheet) is [14]

〈Sboundary〉cylinder L×R =−b
π3L
60R4 E4

(
i

L
2R

)
+higher order terms (2.2)

where E4(τ) is the second Eisenstein series, defined by

E4(τ) = 1−240
∞

∑
n=1

n3qn

1−qn ; q = ei2πτ . (2.3)

Similarly, the lowest order contribution to a rectangular Wilson loop W (R,L) is [18]

〈Sboundary〉W =−b
π3

60
(L+R)

1
R4 E4

(
i
L
R

)
+higher order terms . (2.4)

Notice that 1
R4 E4

(
i L

R

)
= 1

L4 E4
(
i R

L

)
, as required by the R↔ L symmetry.

This functional form has been checked in a set of simulations in the three-dimensional Z2

gauge model [18]. In particular, the evaluation of a set of Polyakov loop correlators in the low
temperature regime and its comparison with eq. (2.2) supports the correctness of the effective
string prediction and it is possible to extract a rather precise estimate of the coefficient b. To check
the correct scaling behavior of b this analysis has been performed for three different values of the
bare coupling β .
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Figure 2: Wilson loop in 3D Z2 gauge theory- Plot of W (L,R)/W (L + 1,R− 1) with R = 4
3 L at β =

0.751805.

The details of the simulation algorithm employed can be found in [19, 20]. As a basic update
mechanism it has been used a multi-spin coded version of the standard Metropolis algorithm.

In order to eliminate the non-universal perimeter and constant terms from the expectation value
of Polyakov loop correlators P(R,L) (where L is the length of the two loops and R their distance)
one typically measures the ratio:

R(R,L) =
P(R+1,L)

P(R,L)
, (2.5)

which can be evaluated for large values of R and L with high precision.
The effective string form of this observable reads, up to the second order in 1/(σRL) expansion

of the string action,

R(R,L) = e−σL η(i L
2R)

η(i L
2R+2)

(1+F2(R+1,L)+FP(R+1,L)−F2(R,L)−FP(R,L)) , (2.6)

where η is Dedekind’s eta function, FP = 〈Sboundary〉 is the leading correction coming from (2.2)
and F2 the standard two loop effective string contribution to the Polyakov loop correlator

F2(R,L) =−
π2L

1156R3σ

[
2E4

(
i

L
2R

)
−E2

2

(
i

L
2R

)]
, (2.7)
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where the first Eisenstein series E2(τ) is

E2(τ) = 1+24
∞

∑
n=1

nqn

1−qn . (2.8)

Using the fact that σ is known with very high precision one can define a new observable which
allows to isolate the boundary term:

S (R,L) = eσL η(i L
2R+2)

η(i L
2R)

R(R,L)−F2(R+1,L)+F2(R,L) . (2.9)

When L� 2R one has

S (R,L)'−b
Lπ3

15R5 . (2.10)

A remarkable consistency check of these numerical evaluations is that the adimensional ex-
pression b

√
σ

3 is almost constant. This quantity can be used to define the continuum limit value
of b, which can thus be considered as a new physical scale of the model, on the same ground as
the string tension σ or the glueball mass mg. The estimate of [18] was b

√
σ

3 ∼ 0.032(2). It is
interesting to notice that this value in the 3d Z2 gauge model is very similar (but ten times more
precise) to the same parameter measured in the 3d SU(2) gauge model in [21].

Using the above value of b it has been also tested [18] the leading boundary contribution to
the Wilson loop given by eq. (2.4). Since one knows σ and b from independent simulations on
Polyakov correlators, there are no free parameters left.

As an example, in figure 2 we report some numerical data for the ratio

R(L,R) =
W (L,R)

W (L+1,R−1)
. (2.11)

The agreement between the data and the effective string prediction is impressive and, within the
precision of the data, the boundary correction is needed to correctly describe them.
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