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In the determination of αs from tau decays several different moments of the hadronic spectral
functions have been used. In a recent work, we performed an analysis of their perturbative be-
haviour under two different assumptions for the higher-order coefficients of the Adler function.
We showed that the various moments can be divided in a small number of classes. We con-
cluded that some of the moments commonly employed in αs extractions should be avoided due to
their bad perturbative behaviour. Furthermore, for the moments that have a good perturbative be-
haviour, and under reasonable assumptions for the higher-order behaviour of the Adler function,
fixed-order perturbation theory (FOPT) provides the superior framework for the renormalization
group improvement. Here we discuss an extension of this analysis where we consider the pertur-
bative series for values of the hadronic invariant mass squared s0 ≤ m2

τ . Our conclusions are not
altered within a reasonable s0 window.
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1. Introduction

In the last 20 years, hadronic tau decays have been an important source of empirical informa-
tion on fundamental parameters of QCD. Notably, the strong coupling, αs, can be extracted with
a good precision at relatively low energies, close to the edge of the validity of perturbative QCD.
After the measurement of the spectral functions at LEP, other parameters such as the strange quark
mass, the CKM matrix element Vus, as well as non-perturbative condensates could be extracted
(see e.g. [1]). The extraction of these parameters relies on sum rules. Quark-hadron duality and the
optical theorem allow to express the decay rate as weighted integrals of the vector and axial-vector
spectral functions running over the hadronic invariant mass squared s from threshold up to m2

τ .
Using the analytic properties of the quark-antiquark correlators, the theoretical counter-part

of the experimental quantities are expressed as contour-integrals in the complex energy plane with
fixed |s| = m2

τ . However, in the theoretical description of τ decays two main obstacles remain.
The first is referred to as duality violations (DVs). They are related to the break-down of local
quark-hadron duality in the vicinity of the Minkowski axis (where resonance effects become im-
portant). In the past, they have been neglected due to a fortuitous kinematical suppression of the
problematic region in the contour integration. Recently, thanks to the progress in modelling DVs
realistically [3, 4], they have been included self-consistently in a full-fledged αs analysis [5, 6]. The
second important obstacle is the prescription for the renormalization group (RG) improvement of
the perturbative series. The most widely employed prescriptions are fixed-order perturbation theory
(FOPT) [7, 8] and contour improved perturbation theory (CIPT) [9, 10]. When used in practice,
they lead to different αs results. With the recently computed α4

s correction [11], the difference be-
came even more pronounced. Several works have dealt with this discrepancy [8, 12, 13, 14, 15, 16]
in the light of the α4

s term. The conclusions in favour of FOPT or CIPT (or a third prescription)
are based on (implicit or explicit) assumptions on the yet unknown higher order αs corrections. In
this context, the goal of Ref. [8] was to construct a plausible model for the higher-order corrections
of the Adler function from the leading renormalon singularities of its Borel transform, using only
general RG arguments to describe the structure of the singularities in the Borel plane. After match-
ing the model to the known coefficients in QCD, the main conclusion of Ref. [8] was that FOPT is
to be preferred over CIPT, since FOPT provides a closer approach to the Borel resummed results
— in the spirit of an asymptotic series.

This conclusion was based solely on the analysis of the weight wτ(x), obtained from the kine-
matics of the decay. This is not entirely satisfactory since realistic determinations of αs employ
(and often require) several different weight functions wi(x). In fact, any analytical wi(x) gives
rise to a valid sum-rule that emphasises a given part of the spectral functions, as well as different
contributions in the theoretical description. In the literature, several weight-functions have been
employed and yet little attention has been paid to the moment dependence of the convergence
properties of the perturbative series. We have addressed this question in Ref. [17] and pursued
the FOPT/CIPT comparison for several weight functions. We showed that the different moments
employed in the literature can be divided in a small number of categories. The characteristics of
their perturbative series could be linked to generic features of the moment weight function and the
dominant renormalon singularities of the Adler function. We concluded that some of the moments
currently employed in some αs extractions should be avoided due to the poor convergence of their
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perturbative expansions. Additionally, for all moments that display good perturbative behaviour
— and under reasonable assumptions for the higher-order corrections — FOPT provided the best
framework to the RG improvement.

A point that was not discussed in [17] is the stability of the conclusions with respect to s0

variations (s0 being the upper limit of integration in the sum-rule, see Eq. (2.1)). The relevance of
this issue lies in the fact that several αs analyses use sum-rules where the data are integrated up to
s0 < m2

τ . Here we show that the conclusions of [17] remain valid when s0 is varied away from m2
τ .

2. Theoretical framework, model, and results

We work with generalized sum-rules, where the weight function in the integrals can be any
analytical function wi(x) and the upper limit of integration is taken to be any point s0 ≤ m2

τ . The
experimental side of the sum-rules are then written as integrals over the spectral functions as

Rwi
τ,V/A(s0) = 12πSEW|Vud |2

∫ s0

0

ds
s0

(
1− s

s0

)2(
1+2

s
s0

)[
ImΠ

(1+0)
V/A (s)− 2s

s0 +2s
ImΠ

(0)
V/A(s)

]
.

(2.1)
The two point functions are defined as Π

µν

V/A(p) ≡ i
∫

dxeipx 〈Ω|T{Jµ

V/A(x)Jν

V/A(0)
†}|Ω〉 and they

assume the usual decomposition into longitudinal and transversal components. The V and A cur-
rents are given by Jµ

V/A(x) = (ūγµ(γ5)d)(x).
The theoretical counter-part of Eq. (2.1) is obtained from the counter-clock wise contour inte-

gration of the correlators with |s|= s0. The contributions on the theory side can be organized as

Rwi
V/A(s0) =

Nc

2
SEW |Vud |2

[
δ

tree
wi

+δ
(0)
wi (s0)+ ∑

D≥2
δ
(D)
wi,V/A(s0)+δ

DV
wi,V/A(s0)

]
. (2.2)

The perturbative contribution is contained in δ tree
wi

and δ
(0)
wi , of which δ

(0)
wi contains the loop correc-

tions. In the chiral limit they are the same for V and A correlators, and correspond to the perturba-
tive series of Π

(1+0)
V/A (s). The quark-mass corrections, as well as contributions from operators with

D > 2 in the OPE, are encoded in the terms δ
(D)
wi,V/A; DV contributions are represented by δ DV

wi,V/A.
Our focus is on the behaviour of the perturbative correction and it is convenient to write it in

terms of the RG invariant Adler function, whose expansion in αs can be written as

D(1+0)(s) ≡ −s
d
ds

Π
(1+0)(s) =

Nc

12π2

∞

∑
n=0

an
µ

n+1

∑
k=1

k cn,k

(
log
−s
µ2

)k−1

, (2.3)

where aµ = α(µ)/π . RG invariance implies that only the coefficients cn,1 are independent. The
other cn,k can be expressed in terms of cn,1 and β -function coefficients. The perturbative contribu-
tion to the theory side of the sum-rules is then

δ
(0)
wi =

∞

∑
n=1

n

∑
k=1

k cn,k
1

2πi

∮
|x|=1

dx
x

Wi(x) logk−1
(
−s0x
µ2

)
an

µ , (2.4)

with x = s/s0 and Wi(x) = 2
∫ 1

x dzwi(z). Due to the RG invariance of D(1+0)(s) one has the freedom
of setting the scale µ . The FOPT prescription corresponds to the choice µ2 = s0. In this case,
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the coupling a(s0) is taken out-side the integrals and one is left with the integration of powers of
log(−x). The CIPT choice correspond to µ2 =−s0x, which resums the logarithms but, in turn, the
integrals are done (numerically) over the running coupling a(−s0x).

In order to compare FOPT and CIPT as well as understand the perturbative behaviour of
spectral function moments, one must have an ansatz for the unknown higher-order Adler function
coefficients cn,1. Here we follow the method introduced in Ref. [8] which makes use of the available
knowledge of the renormalon structure of the Borel transformed Adler function. The idea is to
construct a realistic model for the Borel transform using the leading singularities. We work with
the function D̂(s) and its Borel transform, B[D̂](t), defined as

12π2

Nc
D(1+0)

V (s) ≡ 1+ D̂(s) ≡ 1+
∞

∑
n=0

rn αs(
√

s)n+1 , B[D̂](t) ≡
∞

∑
n=0

rn
tn

n!
. (2.5)

The original series can be understood as an asymptotic expansion of the inverse of B[D̂](t),

D̂(α) ≡
∫

∞

0
dt e−t/α B[D̂](t) , (2.6)

when the integral exists. Singularities of B[D̂](t) on the positive real axis (infra red (IR) renor-
malons) give rise to fixed-sign asymptotic series and obstruct the Borel summation, Eq. (2.6). This
introduces an ambiguity in the integral that is expected to be cancelled against exponentially small
terms in αs, or power corrections(due to the logarithmic running of the coupling). Singularities on
the negative real axis (ultra violet renormalons (UV)) give rise to sign-alternating series.

General RG arguments and the structure of the OPE allow one to determine the position and
strength of the renormalon singularities in the t plane, though not their residues [18]. The fixed-sign
nature of the exactly known coefficients of the Adler function suggest that at low and intermediate
orders the series is dominated by IR singularities. The reference model (RM) of [8] contains the
first two IR and the leading UV singularities. The Borel transform is given by

B[D̂](u) = B[D̂UV
1 ](u)+B[D̂IR

2 ](u)+B[D̂IR
3 ](u)+dPO

0 +dPO
1 u. (2.7)

The structure of the branch-cut singularities can be found in [8]. The residues and the coefficients
dPO

0,1 are fixed by matching to the exactly known c1,1 to c4,1 (augmented by an estimate for c5,1).
Within this model, the conclusion of Ref. [8] in favour of FOPT has been corroborated and

extended in our recent work [17]. All moments that display a good perturbative behaviour favour
the FOPT prescription within the RM. This conclusion can be traced back to the contribution of the
leading IR singularity, related to the D = 4 corrections in the OPE. If this singularity is arbitrarily
suppressed, one generates a model — less realistic, in our opinion — in which CIPT is the preferred
prescription. To realize this scenario in practice, and assess possible model dependencies in our
conclusions, we introduced the following alternative model (AM) where the leading singularity is
absent whereas the sub-leading one at u = 4 is explicitly taken into account:

B[D̂](u) = B[D̂UV
1 ](u)+B[D̂IR

3 ](u)+B[D̂IR
4 ](u)+dPO

0 +dPO
1 u . (2.8)

Within the AM, moments with good perturbative behaviour favour CIPT.
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(b) wτ (x) = (1− x)2(1+2x), CIPT.

Figure 1: Reference model. δ
(0)
wτ

(s0) order by order in αs normalised to the Borel sum for FOPT (left) and
CIPT (right) with three values of s0: 1.5 GeV2, 2.5 GeV2, and m2

τ . Bands give the Borel ambiguities.

The models represent two quite different situations regarding the interplay of the Adler func-
tion coefficients and the running coupling effects. In the RM, there are cancellations between the
contribution from the high-order coefficients cn,1 and the running coupling effects, at a given order
in αs. In this case FOPT is superior since it treats these contributions on an equal footing, while
CIPT misses the cancellations due to the resummation of the running effects to all orders. On the
other hand, the AM represents a situation where the running effects are dominant and should be
resummed. In this case, the high-order coefficients can be neglected and CIPT is a better prescrip-
tion. Since there is no known mechanism that would naturally suppress the leading IR singularity
in QCD, we believe the scenario of Eq, (2.7) to be more realistic.

Using these two models, we compared in Ref. [17] the perturbative series in FOPT and CIPT
generated from 17 polynomial weight-functions wi(x). We showed that they can be divided into a
small number of categories regarding the behaviour of their perturbative series. Generic features
of the functions wi(x) (such as starting or not with the unity), together with the assumptions upon
the Adler function, suffice to determine whether they are suitable for αs extractions and whether
FOPT or CIPT is more suitable for the RG improvement. We showed that some of the weight
functions used in the literature, e.g. polynomials containing solely powers of xi with i≥ 2, should
be avoided due to their bad perturbative behaviour. We also provided further arguments that support
the plausibility of the RM of [8] and concluded that for well-behaved moments FOPT is preferred.

An aspect that was not considered in [17] was the s0 dependence of these conclusions. This is
important because sum-rules with different values of s0≤m2

τ are used in extractions of αs [5, 6, 19].
Here we show explicit results for the FOPT/CIPT comparison for two moments within the two
models given in Eqs. (2.7) and (2.8) and considering three values of s0: 1.5 GeV2, 2.5 GeV2, and
m2

τ . The interval [1.5 GeV2: m2
τ ] spans the values used in the fits of [5, 6]. Since we intent to

compare the perturbative series at different values of s0 a normalisation procedure is in order. For
better comparison, we normalise the series generated for each value of s0 by its corresponding
Borel sum, Eq. (2.6). Hence, in the plots, meaningful series should be asymptotic to the unity.

We start by considering the case of moments that have good perturbative behaviour for s0 =m2
τ .

As a representative we choose to use the kinematic moment wτ . In Fig. 1, we consider the FOPT
and CIPT series within the RM. On the left-hand side, Fig. 1(a), one observes that the normalised

5
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(a) w17(x) = (1− x)2x3(1+2x), FOPT.
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(b) w17(x) = (1− x)2x3(1+2x), CIPT.

Figure 2: Reference model. δ
(0)
w17(s0) order by order in αs normalised to the Borel sum for FOPT (left) and

CIPT (right) with three values of s0: 1.5 GeV2, 2.5 GeV2, and m2
τ . Bands give the Borel ambiguities.

FOPT series still behaves as a good asymptotic series even for s0 significantly smaller than m2
τ .

As expected, for lower s0, the larger values of αs amplify the divergent behaviour above the 8th
order. Nevertheless, the first few terms of the series approach the Borel resummed value. Note
also that the Borel sum has a larger ambiguity for smaller s0 due to larger αs. On the right-hand
side, in Fig. 1(b), one sees that the poor performance of CIPT is amplified by the larger values of
the coupling at lower s0. That is, within the RM, CIPT is not a good approximation to the Borel
resummed values, and even less so for smaller s0.

We now turn to a moment with bad perturbative behaviour: w17(x) = (1− x)2x3(1+ 2x) (to
employ the notation of [17]). In Ref. [17] we showed that moments starting with powers of x
(that do not contain the unity) tend to have bad perturbative behaviour and are largely dominated
by power corrections. In Fig. 2 we address the s0 dependence of this conclusion. On the left,
Fig. 2(a) shows that for higher values of s0 FOPT can approach the Borel result only at high orders
(not available exactly). At low s0 the series displays a wild behaviour and cannot be considered a
good approximation to the Borel sum. In CIPT, Fig. 2(b), the bad behaviour already observed for
s0 = m2

τ is amplified at lower s0. The series are erratic and cannot be consider suitable asymptotic
approximations to the Borel sum. Note that this moment, despite of its bad perturbative behaviour,
enters several determinations of αs from τ decays (e.g. Refs. [20, 21]).

We can perform the same analysis in the alternative model, Eq. (2.8), which receives no contri-
bution from the leading IR singularity. In Fig. 3, we show the series normalised to their respective
Borel resummed values within the AM for wτ(x). In this model, CIPT provides the better frame-
work also for lower values of s0, as shown in Fig. 3(b). The series remains very stable for s0 = 2.5
GeV2 and still approaches the Borel result well. For s0 = 1.5 GeV2 CIPT can still be considered a
good approximation taking into account the amplified Borel ambiguity. The oscillations of FOPT,
already present at s0 = m2

τ , are much amplified for lower s0 (see Fig. 3(a)). Within the AM, the
FOPT series are not a good approximation to the Borel resummed values.

To conclude we examine the case of w17 in the context of the AM. The results are shown in
Fig. 4. The bad perturbative behaviour of FOPT and CIPT remains for all values of s0. This is an
indication of the model independence of the conclusion that w17 (and a number of other moments
also discussed in Ref. [17]) should be avoided in determinations of αs.
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(b) wτ (x) = (1− x)2(1+2x), CIPT.

Figure 3: Alternative model. δ
(0)
wτ

(s0) order by order in αs normalised to the Borel sum for FOPT (left) and
CIPT (right) with three values of s0: 1.5 GeV2, 2.5 GeV2, and m2

τ . Bands give the Borel ambiguities.
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Figure 4: Alternative model. δ
(0)
w17(s0) order by order in αs normalised to the Borel sum for FOPT (left) and

CIPT (right) with three values of s0: 1.5 GeV2, 2.5 GeV2, and m2
τ . Bands give the Borel ambiguities.

3. Conclusions

Recently, we have analysed the perturbative behaviour of several moments often employed
in analyses of αs from τ decays under different assumptions for the large-order behaviour of the
Adler function [17]. We have shown that some of these moments should be avoided due to their
bad perturbative behaviour. Furthermore, under reasonable assumptions for the Borel transformed
Adler function, we showed that FOPT provides the preferred framework for the RG improvement
of moments that display good perturbative behaviour.

Here we showed, for the first time, that these conclusions are still valid if one considers the
perturbative series generated by FOPT and CIPT for s0 ≤ m2

τ . This is a relevant question, since in
αs extractions one often considers sum-rules with s0 ≤m2

τ . We have shown explicitly the results for
two representative moments previously investigated in Ref. [17] for s0 = m2

τ . The s0 dependence
analysis was also carried out for the remaining moments studied in [17] with similar conclusions;
they are not shown here for the sake of brevity.
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