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The interplay between the finite volume and finite lattice spacing is investigated using lattice QCD

simulations to compute the Landau gauge gluon propagator atzero temperature. Comparing

several ensembles with different lattice spacings and physical volumes, we conclude that the

dominant effects, in the infrared region, are associated with the use of a finite lattice spacing. The

simulations show that decreasing the lattice spacing, while keeping the same physical volume,

leads to an enhancement of the infrared gluon propagator. Moreover, we also present results for

the Landau gauge gluon propagator at finite temperature.
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The lattice gluon propagator in Landau gauge at zero and finite temperature Paulo J. Silva

1. The gluon propagator at zero temperature

In [1], we have studied the lattice Landau gauge gluon propagator, usingseveral ensembles
with different lattice volumes and lattice spacings. Here we will report on the comparison of the
gluon propagator computed from similar physical volumes but different lattice spacings. For details
on the lattice setup see [1].

Figure 1 shows the gluon propagator, renormalized at 4 GeV, for physical volumes ranging
from 3.3 fm to 8.1 fm. In all cases, for momenta above∼ 900 MeV the lattice data define a unique
curve; this means that the renormalization procedure has been able to remove all dependence on
the ultraviolet cutoff for the mid and high momentum regions.

However, we observe in the infrared region sizeable effects due to the finite lattice spacing of
the simulation. In particular, the plots show that large lattice spacing simulations underestimate
the propagator in the infrared region. Moreover, we found that the corrections due to the finite
lattice spacing are larger than the corrections due to the finite volume of the latticesimulation —
for details see [1].

One can ask whether the analysis reported here depends on the renormalization scale. Usually,
one chooses a renormalization pointµ in the high momentum region, in order to allow a contact
with the perturbative behaviour. However, choosing a renormalization point in the infrared is also
possible. Here we consider two alternative renormalization points,µ = 500 MeV andµ = 1 GeV
and study how the propagators differ. Note that we only show results forthe simulations performed
atLa≈ 8 fm.

Figures 2 and 3 show that for both renormalization points, the differencesin the infrared
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Figure 1: Comparing the renormalized gluon propagator atµ = 4 GeV for various lattice spacings and
similar physical volumes.
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Figure 2: Gluon propagator renormalised atµ = 500 MeV (left) and atµ = 1 GeV (right).

region are well beyond one standard deviation. This means that the dominant effect in the infrared
propagator is indeed due to the finite lattice spacing, and not the physical box size of the simulation;
this conclusion is independent of the renormalization scale. Therefore lattice artifacts due to a finite
lattice spacing play an important role in the determination of the infrared behaviour of the gluon
propagator in the Landau gauge.
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Figure 3: The gluon propagator renormalised atµ = 500 MeV (left) and atµ = 1 GeV (right) at intermediate
momentum range (top) and up to 5 GeV (bottom).
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2. The gluon propagator at finite temperature

Besides the Landau gauge gluon propagator at zero temperature, we are also engaged in the
computation of the gluon propagator at finite temperature, in order to understand how temperature
changes the gluon propagator [2, 3].

Finite temperature is introduced on the lattice through the reduction of the temporal lattice
size: the simulations are done on latticesL3

s × Lt , with Lt ≪ Ls. The temperature is defined by
T = 1/aLt .

At finite temperature, the gluon propagator is described by two tensor structures,

Dab
µν(q) = δ ab(PT

µνDT(q4,~q)+PL
µνDL(q4,~q)

)

(2.1)

where the transverse and longitudinal projectors are defined by

PT
µν = (1−δµ4)(1−δν4)

(

δµν −
qµqν

~q2

)

, PL
µν =

(

δµν −
qµqν

q2

)

−PT
µν ; (2.2)

the transverseDT and longitudinalDL propagators are given by

DT(q) =
1

2V(N2
c −1)

(

〈Aa
i (q)A

a
i (−q)〉−

q2
4

~q2〈A
a
4(q)A

a
4(−q)〉

)

(2.3)

DL(q) =
1

V(N2
c −1)

(

1+
q2

4

~q2〈A
a
4(q)A

a
4(−q)〉

)

(2.4)

The lattice setup is shown in table 2. The finite temperature simulations described inthis
section have been performed with the help of Chroma library [4]; the FFT transforms have been
done with the PFFT library [5]. For the determination of the lattice spacing we fitthe string tension
data in [6], using the functional form used in [7], in order to have a function a(β ); the fit has a
χ2/do f ∼ 0.03.

Temp. (MeV) β Ls Lt a [fm] 1/a (GeV)

121 6.0000 32,64 16 0.1016 1.9426
162 6.0000 32,64 12 0.1016 1.9426
243 6.0000 32,64 8 0.1016 1.9426
260 6.0347 68 8 0.09502 2.0767
265 5.8876 52 6 0.1243 1.5881
275 6.0684 72 8 0.08974 2.1989
285 5.9266 56 6 0.1154 1.7103
290 6.1009 76 8 0.08502 2.3211
305 5.9640 60 6 0.1077 1.8324
305 6.1326 80 8 0.08077 2.4432
324 6.0000 32,64 6 0.1016 1.9426
486 6.0000 32,64 4 0.1016 1.9426

Table 1: Lattice setup used for the computation of the gluon propagator at finite temperature.
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Figure 4: Transverse gluon propagator for∼ (3.3fm)3 (left) and∼ (6.5fm)3 (right) spatial lattice volumes.

The reader should note that the simulation parameters have been carefully chosen, such that
we only consider two different spatial physical volumes:∼ (3.3fm)3 and∼ (6.5fm)3. This allows
for a better control of finite size effects.

In figures 4 and 5 we show our results. In what concerns the transverse propagator, it decreases
with the temperature for low momenta. Moreover, this component shows finite volume effects; in
particular, the large volume data exhibits a turnover in the infrared, not seen at the small volume
data. The longitudinal component increases for temperatures belowTc ∼ 270MeV. AroundTc,
there is a discontinuity and the propagator decreases forT > Tc. The behaviour of the gluon
propagator as a function of the temperature can also be seen in the 3d plots shown in figure 6.
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Figure 5: Longitudinal gluon propagator for∼ (3.3fm)3 (left) and∼ (6.5fm)3 (right) spatial lattice volumes.
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Figure 7: Longitudinal (left) and transverse (right) gluon propagator for different spatial lattice volumes at
T=324 MeV.

The reported finite volume effects can be seen in more detail in figure 7 for atemperature of
324 MeV.

A complete analysis should include a study of finite lattice spacing effects. Forsuch a goal, we
worked out two different simulations, at T=305 MeV, with similar physical volumes but different
lattice spacings. Figure 8 shows that, for this temperature, finite lattice spacingeffects seem to be
under control, with the exception of the zero momentum for the transverse component.
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Figure 8: Longitudinal (left) and transverse (right) gluon propagator for different lattice spacings (but simi-
lar physical volume) at T=305 MeV.

Our preliminary results at finite temperature are rather similar to previous works — see for
example [8] and references therein. We are currently working on a complete analysis of our data,
towards a better understanding of lattice effects on the gluon propagator at finite temperature.
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