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We investigate gluon propagators and the effective mass of the gluon fields in the MA gauge with

U(1)3 × U(1)8 Landau gauge fixing in SU(3) lattice QCD. The Monte Carlo simulation is per-

formed on 164 atβ=5.7, 5.8 and 6.0 and 324 atβ =5.8 and 6.0 at the quenched level. To calculate

the propagators, we adopt a method to extract gauge fields from link-variables analytically in the

SU(3) case. The off-diagonal gluons behave as massive vector bosons with the approximate ef-

fective massMoff ≃ 1.1−1.2GeV in the region ofr = 0.3−0.8fm, and the propagation is limited

within a short range. On the other hand, the diagonal gluons behave as light vector bosons with

Mdiag ≃ 0.3GeV and the propagation of diagonal gluons remains even in a large range. In this

way, infrared Abelian dominance is shown in terms of short-range propagation of off-diagonal

gluons. Furthermore, we investigate the functional form of the off-diagonal gluon propagator.

The functional form is well described by the four-dimensional Euclidean Yukawa-type function

exp(−moffr)/r with moff = 1.3−1.4GeV forr = 0.1−0.8fm. This also indicates that the spectral

function of off-diagonal gluons has the negative-value region.
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SU(3) lattice QCD study of the gluon propagator in MAG Shinya Gongyo

1. Introduction

For the quark-confinement mechanism, the dual-superconductor picture was suggested by
Nambu, ’t Hooft and Mandelstam [1]. In this picture, there occurs color-magnetic monopole con-
densation, and then the color-electric flux between the quark and the antiquark is squeezed as a one-
dimensional tube due to the dual Higgs mechanism. From the viewpoint of the dual-superconductor
picture in QCD, however, there are two assumptions of Abelian dominance [2, 3] and monopole
condensation. Here, Abelian dominance means that only the diagonal gluon component seems to
be significant to confinement.

The various lattice QCD Monte Carlo simulations support these assumptions when the maxi-
mally abelian (MA) gauge fixing is performed [4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

According to these studies, only the diagonal gluons play a dominant role for the infrared
QCD physics, which is called “infrared Abelian dominance". Infrared Abelian dominance means
that off-diagonal gluons are not significant to infrared QCD. Therefore, the essence of infrared
Abelian dominance lie in the behavior of the off-diagonal gluon propagator.

The gluon propagators in the MA gauge has been investigated in SU(2) lattice Monte Carlo
simulations [10, 13, 14]. To investigate the gluon propagators in the MA gauge, it is desired to ex-
tract the gluons exactly from the link-variables, because the link-variable cannot be expanded even
for a small lattice spacing due to large fluctuation of gluons. In SU(2) lattice case, the extraction
is easy to be done without any approximation, because of the SU(2) property. With this extraction,
the SU(2) lattice simulation suggests that the off-diagonal gluons do not propagate in the infrared
region due to the effective massMoff ≃ 1.2GeV, while the diagonal gluon widely propagates [10].

In this paper, we propose a method to extract the gluons from the link-variable directly and
generally in SU(3) lattice QCD, and to investigate the gluon propagators in the MA gauge.

2. Formalism to extract gluon fields from link-variables

In this section, we consider a useful and general method to extract the gauge fields analytically
and exactly from the link-variables whether|agAµ(x)| ≪ 1 is satisfied or not [15].

To this end, we first define the hermite matrix,

Λ ≡ 1
2i

(
U −U†)= 1

2i
(eiagA−e−iagA)≡ sinagA. (2.1)

For simplicity, we have omitted the Lorentz index and space-time arguments.

Arbitrary hermite matrixΛ can be diagonalized by a unitary transformation as

Λd ≡ ΩΛΩ† =

 λ1 0
λ2

0 λ3

 , (2.2)

whereΩ ∈SU(3). We can obtain the eigenvaluesλi (i = 1,2,3) by solving

det(x1−Λ) = 0. (2.3)
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This is a cubic equation onx with real coefficients. The eigenvaluesλi , i.e., the solutions of the
equation are

x0,± = z0,±

√
α2+β/3+α, (2.4)

where

z0 ≡ eiθ/3+e−iθ/3, z± ≡ ei(θ±2π)/3+e−i(θ±2π)/3, (2.5)

and

α ≡ 1
3

TrΛ ∈ R, β ≡−(Λ22Λ33+Λ33Λ11+Λ11Λ22−|Λ23|2−|Λ31|2−|Λ12|2) ∈ R. (2.6)

Here,θ = θ(α,β ) ∈ R is analytically obtained and the derivation is given by Cardano’s method.
In this way,λi is obtained.

The unitary matrixΩ can be also derived as follows. By solvingΛ⃗ei = λi⃗ei , we obtain normal-
ized eigenvectors⃗ei =

t(xi ,yi ,zi) (i = 1,2,3). Because of|⃗e|= 1, there is non-zero component, so
thatzi is assumed to be nonzero without loss of generality and rescale it by 1/zi ,

Λ t (xi/zi yi/zi 1) = λi
t (xi/zi yi/zi 1) . (2.7)

This is solved easily as(
xi/zi

yi/zi

)
= −{(Λ11−λi)(Λ22−λi)−Λ12Λ21}−1

(
Λ22−λi −Λ12

−Λ21 Λ11−λi

)(
Λ13

Λ23

)
. (2.8)

From the normalization condition|⃗ei |= 1, we obtainΩ† = (e⃗1, e⃗2, e⃗3).
When we diagonalizeΛ with the unitary matrixΩ, the gluon fieldsA are diagonalized. Thus,

the link-variablesU = eiagA are also diagonalized with the unitary matrixΩ as

Ud ≡ ΩUΩ† = eiagΩAΩ† ≡ diag
(

eiθ1,eiθ2,eiθ3

)
, (2.9)

where−π ≤ θi < π (i = 1,2,3) is taken.
In this way, we can derive gluon fieldsA from link-variablesU analytically by diagonalizing

them,

ΩAΩ† =
1
ag

 θ1 0
θ2

0 θ3

 ⇒ A=
1
ag

Ω†

 θ1 0
θ2

0 θ3

Ω. (2.10)

This formalism is quite general, because the derivation is correct in any gauge and even without
any gauge fixing.

3. SU(3) lattice QCD results for gluon propagators in the MA gauge

Using the SU(3) lattice QCD, we calculate the gluon propagators [16] in the MA gauge with
the U(1)3×U(1)8 Landau gauge fixing. In the MA gauge, to investigate the gluon propagators, we
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SU(3) lattice QCD study of the gluon propagator in MAG Shinya Gongyo

use the above-mentioned method. The Monte Carlo simulation is performed with the standard pla-
quette action on the 164 lattice withβ =5.7, 5.8 and 6.0 and 324 with β = 5.8 and 6.0 at the quenched
level. All measurements are done every 500 sweeps after a thermalization of 10,000 sweeps using
the pseudo heat-bath algorithm. We prepare 50 configurations with 164 and 20 configurations with
324 at eachβ . The statistical error is estimated with the jackknife method.

Here, we study the Euclidean scalar combination of the diagonal (Abelian) and off-diagonal
gluon propagators as

GAbel
µµ (r)≡ 1

2 ∑
a=3,8

⟨
Aa

µ(x)A
a
µ(y)

⟩
, Goff

µµ(r)≡
1
6 ∑

a̸=3,8

⟨
Aa

µ(x)A
a
µ(y)

⟩
. (3.1)

The scalar combination of the propagator is expressed as the function of the four-dimensional
Euclidean distancer ≡

√
(xµ −yµ)2. When we consider the renormalization, these propagators

are multiplied by anr-independent constant, according to a constant renormalization factor of the
renormalized gluon fields.

We show in Fig.1 the lattice QCD result for the diagonal gluon propagatorGAbel
µµ (r) and the off-

diagonal gluon propagatorGoff
µµ(r) in the MA gauge with the U(1)3×U(1)8 Landau gauge fixing.

In the MA gauge,GAbel
µµ (r) andGoff

µµ(r) manifestly differ. The diagonal-gluon propagatorGAbel
µµ (r)

takes a large value even at the long distance. In fact, the diagonal gluonsA3
µ ,A

8
µ in the MA gauge

propagate over the long distance. In contrast, the off-diagonal gluon propagatorGoff
µµ(r) rapidly

decreases and is negligible forr >
∼ 0.4fm in comparison withGAbel

µµ (r). Then, the off-diagonal
gluonsAa

µ (a ̸= 3,8) seem to propagate only within the short range asr <
∼ 0.4fm. Thus, “infrared

abelian dominance" is found in the MA gauge.

 0

 0.5

 1

 1.5

 2

 2.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

G
µµ

 (
r)

 [
G

eV
2 ]

r [fm]

Gµµ
Abel,β=6.0

Gµµ
Off  ,β=6.0

Gµµ
Abel,β=5.8

Gµµ
Off  ,β=5.8

Gµµ
Abel,β=5.7

Gµµ
Off  ,β=5.7

 0.001

 0.01

 0.1

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

G
µµ

 (
r)

 [
G

eV
2 ]

r [fm]

Figure 1: The SU(3) lattice QCD results of the gluon propagatorsGAbel
µµ (r) andGoff

µµ(r) as the function of

r ≡
√
(xµ −yµ)2 in the MA gauge with the U(1)3×U(1)8 Landau gauge fixing in the physical unit. The

Monte Carlo simulation is performed on the 164 lattice with β = 5.7, 5.8 and 6.0. The diagonal-gluon
propagatorGAbel

µµ (r) takes a large value even at the long distance. On the other hand, the off-diagonal gluon
propagatorGoff

µµ(r) rapidly decreases.

4. Estimation of diagonal and off-diagonal gluon mass in the MA gauge

Next, we investigate the effective mass of diagonal and off-diagonal gluons [16]. We start from
the Lagrangian of the free massive vector fieldAµ with the massM ̸= 0 in the Euclidean metric. In
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the infrared region with largeMr, the propagatorGµµ(r;M) reduces to

Gµµ(r;M) =
⟨
Aµ(x)Aµ(y)

⟩
=

3
4π2

M
r

K1(Mr)≃ 3
√

M

2(2π) 3
2

e−Mr

r
3
2

, (4.1)
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Figure 2: The logarithmic plot ofr3/2Goff
µµ(r) andr3/2GAbel

µµ (r) as the function of the Euclidean distancer
in the MA gauge with the U(1)3×U(1)8 Landau gauge fixing, in the SU(3) lattice QCD with 164 at β = 5.7,
5.8 and 6.0. The solid line denotes the logarithmic plot ofr3/2Gµµ(r)∼ r1/2K1(Mr) in the Proca formalism.
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Figure 3: The logarithmic plot ofr3/2Goff
µµ(r) andr3/2GAbel

µµ (r) as the function of the Euclidean distancer
in the MA gauge with the U(1)3×U(1)8 Landau gauge fixing, in the SU(3) lattice QCD with 324 at β = 5.8
and 6.0.

In Fig.2, we show the logarithmic plot ofr3/2Goff
µµ(r) andr3/2GAbel

µµ (r) as the function of the
Euclidean distancer in the MA gauge with the U(1)3×U(1)8 Landau gauge fixing. From the linear
slope onr3/2Goff

µµ(r) in the range ofr = 0.3−0.8 fm, the effective off-diagonal gluon massMoff is
estimated. Note that the gluon-field renormalization does not affect the gluon mass estimate, since
it gives only an overall constant factor for the propagator. We summarize in Table 1 the effective
off-diagonal gluon massMoff obtained from the slope analysis with 164 at β =5.7, 5.8 and 6.0.
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Therefore, the off-diagonal gluons seem to have a large massMoff ≃ 1.1−1.2 GeV. This result
approximately coincides with SU(2) lattice calculation [10].

On the other hand, for the diagonal gluons, their propagator seems to have some dependence
onβ and lattice volume. Therefore, we estimate the effective diagonal gluon massMdiag with larger
lattice size, 324. In Fig.3, we present the logarithmic plot ofr3/2Goff

µµ(r) andr3/2GAbel
µµ (r) with 324

at β =5.8 and 6.0. From the linear slope onr3/2GAbel
µµ (r) in the range ofr = 0.3− 0.8 fm, the

effective diagonal gluon mass is estimated asMdiag≃ 0.3GeV at eachβ .

Table 1: Summary table of conditions and results in SU(3) lattice QCD. In the MA gauge, the off-diagonal
gluons seem to have a large effective massMoff ≃ 1.1−1.2 GeV and the functional form in the range of
r = 0.1−0.8 fm is well described with the four-dimensional Euclidean Yukawa function∼ exp(−moffr)/r
with moff ≃ 1.3−1.4 GeV.

lattice size β a[fm] Moff [GeV] moff [GeV]

5.7 0.186 1.2 1.3
164 5.8 0.152 1.1 1.3

6.0 0.104 1.1 1.4

Finally in this section, we discuss the relation between infrared abelian dominance and the
off-diagonal gluon mass. Due to the large effective massMoff , the off-diagonal gluon propagation
is restricted within aboutM−1

off ≃ 0.2fm in the MA gauge. Therefore, at the infrared scale asr ≫
0.2fm, the off-diagonal gluonsAa

µ (a ̸= 3,8) cannot mediate the long-range force like the massive
weak bosons in the Weinberg-Salam model, and only the diagonal gluonsA3

µ , A8
µ can mediate the

long-range interaction in the MA gauge. In fact, in the MA gauge, the off-diagonal gluons are
expected to be inactive due to the large massMoff in the infrared region in comparison with the
diagonal gluons. Then, infrared abelian dominance holds forr ≫ M−1

off .

5. Analysis of the functional form of off-diagonal gluon propagator in the MA gauge

In this section, we investigate the functional form of the off-diagonal gluon propagatorGoff
µµ(r)

in the MA gauge in SU(3) lattice QCD [16]. In the previous section, we compare the off-diagonal
gluon propagator with the massive vector boson propagator and estimate the gluon mass. In fact,
the gluon propagator would not be described by a simple massive propagator in the whole region
of r = 0.1−0.8 fm.

There is the similar situation in the Landau gauge [17]. The functional form of the gluon
propagator cannot be described by exp(−Mr)/r3/2 with an effective massM in the whole region
of r = 0.1−1.0 fm. The appropriate form is the four-dimensional Euclidean Yukawa-type function
exp(−mr)/r with a mass parameterm.

In the same way, in the MA gauge, we also compare the gluon propagator with the four-
dimensional Euclidean Yukawa function. In Fig.4, we show the logarithmic plot ofrGoff

µµ(r) and
rGAbel

µµ (r) as the function of the distancer in the MA gauge with the U(1)3×U(1)8 Landau gauge
fixing. Note that the logarithmic plot ofrGoff

µµ(r) is almost linear in the whole region ofr = 0.1−
0.8 fm, and therefore the off-diagonal gluon propagator is well expressed by the four-dimensional

6
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Euclidean Yukawa functionAe−moff r/r, with a mass parametermoff and a dimensionless constant
A. The best-fit mass parametermoff is given in Table 1 at eachβ = 5.7, 5.8 and 6.0.
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Figure 4: The logarithmic plot ofrGoff
µµ(r) andrGAbel

µµ (r) as the function of the Euclidean distancer in the
MA gauge with the U(1)3×U(1)8 Landau gauge fixing, using the SU(3) lattice QCD with 164 at β=5.7, 5.8
and 6.0. ForrGoff

µµ(r), the approximate linear correlaton is found.

We comment on the four-dimensional Euclidean Yukawa-type propagator [17]. If the func-
tional form of the off-diagonal gluon is well described by the four-dimensional Yukawa function,
we analytically calculate the off-diagonal zero-spatial-momentum propagator,Doff

0 (t)≡
∫

d3xGoff
µµ(r),

and obtain the spectral functionρoff(ω) by the inverse Laplace transformation in the MA gauge:

ρoff(ω) =− 4πAmoff

(ω2−m2
off)

3/2
θ(ω −moff)+

4πA/
√

2moff

(ω −moff)1/2
δ (ω −moff). (5.1)

6. Summary and Concluding Remarks

We have performed the study of the gluon propagators in the MA gauge with the U(1)3×U(1)8
Landau gauge fixing in the SU(3) quenched lattice QCD. To investigate the gluon propagators in
the MA gauge, we have considered to derive the gluon fields analytically from the SU(3) link-
variables.

With this method, we have calculated the Euclidean scalar combinationGµµ(r) of the diag-
onal and the off-diagonal gluon propagators, and have considered the origin of infrared Abelian
dominance. The Monte Carlo simulation is performed on the 164 lattice atβ=5.7, 5.8 and 6.0 and
on the 324 at β=5.8 and 6.0 at the quenched level. We have found that the off-diagonal gluons be-
have as massive vector bosons with the effective massMoff ≃ 1.1−1.2 GeV forr = 0.3−0.8 fm.
The effective gluon mass has been estimated from the linear fit analysis of the logarithmic plot of
r3/2Goff

µµ(r). Due to the large value, the finite-size effect for the off-diagonal gluon mass is expected
to be ignored. The large gluon mass shows that the off-diagonal gluons cannot mediate the interac-
tion over the large distance asr ≫ M−1

off , and such an infrared inactivity of the off-diagonal gluons
would lead infrared Abelian dominance in the MA gauge.
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On the other hand, from the behavior of the diagonal gluon propagatorGAbel
µµ (r) andr3/2GAbel

µµ (r),
the diagonal gluons seem to behave as light vector bosons withMdiag≃ 0.3 GeV forr = 0.3−0.8 fm
[16], considering also the larger-volume analysis with 324 at β = 5.8 and 6.0.

Finally, we have also investigated the functional form of the off-diagonal gluon propagator
Goff

µµ(r) in the MA gauge. We show thatGoff
µµ(r) is well described by the four-dimensional Eu-

clidean Yukawa-type form with the mass parametermoff ≃ 1.3−1.4 GeV in the whole region of
r = 0.1−0.8 fm. This indicates that the spectral functionρoff(ω) of the off-diagonal gluons in the
MA gauge has the negative-value region [16], as in the Landau gauge [17, 18, 19].
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