PROCEEDINGS

OF SCIENCE

On the Analytic Structure of Scalar Glueball
Operators

Andreas Windisch
Ingtitut f r Physik, Karl-Franzens Universit t Graz, Univ ersit tsplatz 5, 8010 Graz, Austria
E-mail: andr eas. wi ndi sch@ini - graz. at

Markus Q. Huber

Ingtitut f r Kernphysik, Technische Universitt Darmstad t, Schlossgartenstrasse 2, 64289
Darmstadt, Germany

E-mail: mar kus. huber @hysi k. t u- dar nst adt . de

Reinhard Alkofer
Institut f r Physik, Karl-Franzens Universit t Graz, Univ ersit tsplatz 5, 8010 Graz, Austria
E-mail: r ei nhar d. al kof er @ini - graz. at

The correlator of the square of the Yang-Mills eld-strengt h tensor corresponds to a scalar glue-
ball, i. e, to a bound-state formed by gluonic ingredients only. It has quantum numbers 0**
and its mass, as predicted by different theoretical approaches, is expected to lie between 1 and
2 GeV. Here we restrict our considerations to the Born level, that is, we consider the correlator
to zeroth order in the coupling. Gluonic self-interaction is taken into account indirectly by using
non-perturbative gluon propagators. The employed closed expressions are motivated by lattice
and Dyson-Schwinger studies. The analytic continuation of the integrals themselves is compli-
cated by additional obstructive structures like branch cuts and poles that are induced by the inner
integral in the complex plane of the outer integration variable. We deal with this problem by de-
forming the outer integration contour accordingly. For different input gluon propagatorswe nd a
positive glueball spectral density which isrequired for physical states. Poles are, however, absent
which ismost likely an artifact of working at Born level.
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1. Introduction

As color-carrying states gluons do not appear as asymptotic physical states. They are con ned
to observable color singlet objects by some mechanism, see, e. g., [1] for a short review. In pure
Yang-Mills theory the only possibility to generate color neutral and thus obs ervable statesisto
combine several gluonsto form abound state, aglueball. Experimentally, they are very hard to nd
due to mixing with mesonic states. On the theoretical side, several approaches for gluonic bound
states are available, see, for instance, [2] for arecent review.

In the following we calculate the correlator of a0 * glueball candidate and determine its ana-
lytic properties [3] from which we can extract the spectral density. For aphysically observable state
the spectral density must be positive in order to alow a probabilistic interpretation [4, 5]. Thus,
the detection of positivity violations indicates that a certain state is expelled form the asymptotic
state space (and in this sense con ned), while the converse does not ho |d necessarily. Glueballs
must therefore possess a positive spectral density, although their constituents may not. Indeed, pos-
itivity violations of gluons are established in the Landau gauge from lattice [6, 7] and functional
calculations[8, 9].

Asa rst approximation we take into account only the Abelian part of the eld strength tensor.
This simpli es the calculations in several respects. For example, renormaliza tion would become
more complicated but the required machinery is available [10]. However, the input we use was
obtained from full Yang-Mills theory and therefore contains interactions. In the following we will
use two different tsfor the gluon propagator and calculate the glueball ¢ orrelator numerically. In
simple casesthisis also possible analytically, see, e. g. [11, 12]. For future applications a numeric
procedure is certainly advantageous asit allows, for instance, to use al'so numerical data as became
available only recently [13].

The calculation of the correlator boils down to atwo dimensional integral. Since we consider
complex external momenta, an additional subtlety arises: The inner integral leads to non-analytic
structures, like branch cuts, in the complex plane of the outer integration variable which have to be
taken into account properly. We do this here by deforming the integration contour, i. e., also the
radial integration variable becomes complex. This method is already known, see, for example, 8],
but in the present case the structure of the arising non-analyticitiesis especially tedious as detailed
below.

Thetwo gluon propagator tsweemploy here are of the decoupling[14, 15 , 16, 9, 17] and scal-
ing type[18]. For the former we use a t to lattice data motivated by there ned Gribov-Zwanziger
scenario (RGZ) [19]. For the chosen parameter values it possesses two complex conjugate poles.
Notethat other ts, for instance, in[20], were suggested aswell, but mos t of them are special cases
of the used one. For the scaling type propagator we use a t to the solution o f a Dyson-Schwinger
study [8]. It has a branch cut on the negative real axis.

2. Some Prerequisites
We consider the correlator of a candidate for a scalar glueball with quantum numbers 0* ™,

hF2QF2(0)ig = hF3, (OF2, (WF 2, (0)F 5 (0)ig; (2.1)
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where d is the space-time dimension and F§,, (X) is, as part of our approximation, just the Abelian
part of the Yang-Mills eld-strength tensor given by

Fa, = 0uA3 0 AL: (2.2)

We are interested in the momentum space representation of this correlator,
z dd
(2m)?

hF2(X)F2(0)ig = P dprxg 4(P?): (2.3)
The desired expression, Og(p?), reads [12]

z

d
Ou(p) =802 1) oK

(2my

For atransverse gluon propagator we have

G((p RAGEYK(P K>+ 2k (p K)) : (24)

Dy (P = B p‘;f“ G (p?); (2.5)

where only the scalar part G (p?) enters the expression (2.4). A further complication we have not
addressed so far is the fact that in 4 Euclidean space time dimensions, the integral as given in
eg. (2.4) diverges like p*. To render the integral nite we employ the BPHZ renormalization,
i. e, we Taylor subtract the divergent terms:

4
O =0u?) Ou0) Fos0ui) | P o0 ;i (9

The odd derivatives vanish because of the anti-symmetry of the angular integral. In order to obtain
the analytic structure of the scalar glueball correlator, we have to solve eg. (2.6) for complex values
of the square of the external momentum. The spectral density is then accessible by evaluating the
discontinuity of the branch cut along the negative real axis. For the two-point function A(p?) of a
given spin zero operator @, the spectral density reads

P(pz)—Zm lim[AC p* ie) A p*+ie)] (27

and the spectral representation of the two-point function is

Z Z
A(p?) = (dd;’ & PXhp(X)D(0)i = . “dr EI)Z

(2.9)

if no poles or cuts except for time-like momenta exist. 1o is the multi-particle threshold.

Eq. (2.4) holds for arbitrary dimensions. Here we consider only d = 4. The two-dimensional
case, which of course has atrivial glueball spectrum, served as a test-case for the devel opment of
the numerics and is presented together with the four-dimensional resultsin [3].
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3. TheMethod

The algorithm we use here is described in detail in [21], where as an example the analytical
results from [12] were reproduced. Let us consider the case of the RGZ propagator t of [19],

p*+s

2y — .
G(p)—Cp4+u2p2+t2.

(3.1)

The t-parametersare s= 2:508GeV?,t = 0:72GeV?, u= 0:768GeV and C = 0:784 [19]. In [21]
the following steps are given in order to evaluate the integral (2.4):

STEP 1: Express (2.4) in hyper-spherical coordinates

220 721 p wry  2PxPy
y 2 X yz+s
= 2 DN DN
0409 m o dy y 1dz 1 Z(x+y 2"XTyD)2+e(x+y 28 xTyz)+t2
P_p._ p_
y2+uy2y+t2 x+y 2 xPyay+2Py xz )2 ; (3.2)

wherex=p?,y=kland p k= p?(pyz.

STEP 2: Renormalization
Theintegral (3.2) diverges quadratically in x. The renormalized expression is given by (2.6).

STEP 3: Analytic continuation

For the present case this step can be performed either analytically or numerically. For x2 C
the inner integral of eq. (3.2) can produce an integrable singularity together with the rest of
theintegrand. When zrunsthrough itsintegration interval [ 1;1], it picks up awhole line of
these singular points resulting in a branch cut in the complex plane of the radial integration
variable y. Thus the contour of the radial integral has to be deformed in order to avoid the
cut. For eg. (3.2) we nd two branch cuts as well asapair of complex conju gate poles. The
branch cuts, parametrized by z, in the y-plane can be determined analytically by nding the

zeroes of the integrand of eq. (3.2) for a given x 2 C. We compared these results with a
numerical integration. For x= 2+ 2i both are shown in Fig. 1.

Itisclearly visiblein Fig. 1 that the deformation of the contour of the y-integration, required
to connect y = 0to y = £2 where & isa UV cutoff, can be quite tricky. In general the open
piece between the branch cuts always points in the direction of Arg(x). Thus, if x is on the
positive real axis, the integration is straightforward since y can be kept real as well. Now
let us consider a complex x = (r; @) by keeping r xed while 0 < ¢ < =2. There are no
polesin the rst quadrant, and the opening of the branch cuts always po int in the direction
of Arg(x), thus the contour can be deformed continuously in that case. The same is true
for the fourth quadrant. However, the complex conjugate poles of the integrand located in
the quadrants Il and |11 require more care. Obviously the contour cannot be deformed as
easily for Arg(pi) = Arg(x) = Arg(pii), where py; and pyy; are the pole locations in the
second and third quadrants, respectively. For some values of x the branch cut end points are
narrowing down the area for a possible contour, see Fig. 2. When an endpoint of a branch
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Figure 1. Left: Analytic resultsfor the branch cuts and polesin the complex y-planefor x= 2+ 2i. Right:
Numerical veri cation of the analytic result.
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Figure 2: Left: Theregion for possible contours narrowsdown, x = 2. Right: x=1:18+ 2:7i. The same
situation occursfor x = 1:18 2:7i, with the cuts ipped around the real axis.

cut coincides with one of the poles, the contour cannot be deformed continuously and a non-
analyticity arisesin theintegral. In [3] we con rmed that for all points where th is happens a
branch point is also predicted from the Cutkosky rules[22].

There are two further steps which we omit here as they are purely technical. What is relevant
here is that the complex conjugate poles together with the two branch cuts severely restrict the
possibilities for the contour deformation. It is hard to obtain stable results for complex values of
x when the argument of x coincides with the argument of one of the pole locations. As discussed
in the next section, we nd three branch cuts for the RGZ case, one along the negative real axis,
and two along the directions Arg(py;) and Arg(py1). The numerical determination of the branch
points in this case is very troublesome, because for x-values close to the cuts in the x-plane the
contour necessarily always comes very close to the cuts in the y-plane what leads to numerical
artifacts. Even though the scaling propagator of [8] has a branch cut and the integrand induces two
more cuts in the y-plane, the absence of poles alows a continuous contour deformation to values
very close to the negative real axis. The results for the scaling propagator are thus not plagued by
numerical issues.
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Figure 3: Left: The imaginary part of the scalar glueball correlator withARguons as inputRight: The
real part of the correlator.

4. Results

4.1 Decoupling

In the previous section we already discussed several aspects of thprR@agator as gluonic
input. Most importantly, we con rmed the location of the branch points knowwmfthe Cutkosky
rules. Fig. 3 shows the imaginary and real parts of the correlator. The tianch cuts are clearly
visible. The two 'unphysical” ones open very slowly. The extracted digaoity of the 'physical’
branch cut is depicted in g. 4. It becomes negative for small values @t and rises earlier than
expect from the Cutkosky analysis. From investigating the complex platie ghdial integration
variable we know that these phenomena are numerical artifacts whichpeetew vanish if the
contour deformation is better tuned; see [3] for a more detailed discuSdiois. we conclude that
the spectral density is positive.
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Figure 4: The discontinuity of the physical branch cutft: Decoupling gluonsRight: Scaling gluons.



