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1. Motivation

Dyson-Schwinger equations (DSEs) provide a non-perturbative tool for studying quantum
field theories. Being an infinite set of coupled equations for the n-point functions of the theory,
they contain in principle all information about the observables of the underlying theory. In addi-
tion, since they are derived from the renormalized action, they are fully renormalized equations
and, given a certain regularization and renormalization scheme, all divergences are absorbed in
appropriately determined renormalization constants.

In practical calculations, however, truncations of the full infinite system to a finite subset of
equations have to be performed. In general these truncations will interfere with the renormalization
of DSEs and divergences will reappear. In addition an inappropriate choice of a regulator might
also introduce divergences, as e.g., a hard cut-off in numerical calculations. Thus even though the
full infinite set of DSEs might be fully renormalized, in practical calculations divergences have
to be properly subtracted. Furthermore, perturbative renormalization is not sufficient due to the
self-consistent nature of DSEs.

In Dyson-Schwinger studies of Landau gauge Yang-Mills propagators in four dimensions es-
pecially spurious quadratic divergences caused problems, since they are related to the breaking of
gauge symmetry by the regularization/truncation scheme. Successful treatements were, e.g., iden-
tification and subtraction in the relevant tensor-components of the gluon self-energy [1, 2], and the
construction of explicit subtraction terms within the integral kernels [3, 4, 5]. On the other hand,
logarithmic divergences can be treated straightforwardly in a MOM-scheme.

In studies of the Landau gauge gluon propagator DSE truncations were chosen such that all
terms containing a four-gluon interaction have been neglected, see, however, ref. [6]. A special role
is played by the tadpole diagram: It only contributes a quadratically divergent constant, which is
then removed in the renormalization process. The other terms with a four-gluon interaction are of
two-loop order, the so-called sunset and squint diagrams. As the gluon-dressing function resulting
from DSE studies is in the intermediate momentum region somewhat smaller than the ones obtained
from lattice calculations or the Functional Renormalization group [5] it has been speculated that
the two-loop terms might provide the missing contribution. Therefore it is desirable to include
the sunset and the squint diagram into DSE studies of the Yang-Mills propagators propagators in
Landau gauge.

Most non-perturbative studies of the Yang-Mills propagators have been done in Landau gauge.
Another covariant gauge, where in the last years progress has been gained, is the Maximally
Abelian gauge (MAG) [7, 8, 9, 10, 11, 12, 13]. This gauge is especially appealing, since it al-
lows to study the dual superconductor picture of the Yang-Mills vacuum. In this picture, confine-
ment is realized via a dual Meissner effect and color-electric fields are squeezed into flux-tubes
by the screening property of the vacuum. This relates to the hypothesis of Abelian dominance
[14] which postulates a dominance of the abelian degrees of freedom over the non-abelian ones
in the infrared. This hypothesis could also be confirmed in an infrared analysis of the untruncated
Dyson-Schwinger equations in this gauge [11]. This investigation showed that the abelian (diago-
nal) gluons are enhanced in the infrared in contrast to the off-diagonal gluons and ghosts, which are
infrared suppressed. Hereby, the infrared leading diagram in the gluon propagator DSE in MAG
is the sunset and possibly the squint diagram. However, both, sunset and squint diagrams, include
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Figure 1: The Dyson-Schwinger equation of the gluon-propagator in Landau gauge.

four-point interactions.
In these proceedings we report on progress which has been gained in including the sunset

diagram into Dyson-Schwinger studies of Yang-Mills theory in four dimensions. A main step is
the identification and subtraction of overlapping quadratic divergences. We present results on the
contribution of the sunset diagram to the gluon dressing function in Landau gauge and propose a
possible minimal truncation of the propagator DSEs in the MAG.

2. Dyson-Schwinger equations in Landau gauge

The Dyson-Schwinger equation for the gluon propagator in Landau gauge is depicted in Fig.1
Over the last decade a truncation scheme has evolved in which all terms containing four-gluon
interactions were excluded. In addition the ghost-propagator DSE was taken into account , which
left only two unknown Green-functions in the system, the ghost-gluon and three-gluon vertex,
which were modeled.1 We want to start from this truncation with the vertex models as introduced
in Ref. [3] and then add the sunset diagram to this system.

The presented truncation, and the usage of a hard momentum cut-off, introduce quadratic di-
vergences. One possibility to deal with these divergences is to modify the integration kernel in
the gluon-loop such that they cancel the quadratic divergences from the ghost-loop [3]. The cor-
responding renormalization condition is the vanishing of the gluon pole mass, Zmm2 = 0, which
holds for any order in perturbation theory2. The logarithmic divergencies are then subtracted in
a MOM-scheme. When now including the sunset new overlapping quadratic divergences appear.
Since there is no partner to cancel these divergences, we have to subtract the quadratic divergences
within the diagram itself. To fulfill the corresponding renormalization condition we have to com-
pletely subtract these divergences without any additive constant. As it will be seen below, for a
specific momentum partitioning we are able to construct a modified integration kernel which yield
an integral without any quadratic divergences.

1See, however, the recent investigation [15] in which a dynamic ghost-gluon vertex have been taken into account.
2Note that this is not in contradiction to the family of decoupling solutions [16, 17, 5] of Landau gauge DSEs which

are confirmed by lattice calculations [18, 19, 20, 17]. There one observes infrared-screening, i.e., a Debye mass which
for the scaling solution would just be infinite.
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3. The sunset diagram: Ultraviolet (UV) analysis

The analytic expression of the sunset diagram in the DSE of the gluon propagator is given by

Πab
µν sunset(k) =−Z4

1
6

∫
d̄4q1

∫
d̄4q2Γ(0)arst

µρστ Γbr′s′t ′
νρ ′σ ′τ ′(−p, p1, p2, p3)Dss′

σσ ′(p1)Drr′
ρρ ′(p2)Dtt ′

ττ ′(p3)

(3.1)
with the bare and fully dressed four-gluon vertices, Γ(0) and Γ, resp., and the fully dressed gluon-
propagator D. The pi denote the gluon momenta, and the qi some appropriately chosen loop mo-
menta, see below. We have also used the short-hand notation

∫
d̄4q =

∫
d4q/(2π)4. To proceed we

have to assume a model for the dressed four-gluon vertex. In this study we assume a tree-level ten-
sor structure mulitiplied with a scalar dressing function which will be modeled such that the correct
UV and IR behavior is reproduced, Γabcd

ναβγ(−p, p1, p2, p3) ≈ DΓ(−p, p1, p2, p3)Γ
(0)abcd
ναβγ . Inserting

also the definition for the gluon propagators Dab
µν(q) = δ abTµν(q)Z(q2)/q2 with the transverse pro-

jector Tµν(q) = δµν −qµqν/q2 and projecting the equation with the generalized Brown-Pennington
projector, T ζ

µν(p) = 1
3

(
δµν −ζ pµ pν/p2

)
, and δ ab one obtains

Πpro j
sunset =−Z4

1
6

g4N2
c

∫
d̄4q1

∫
d̄4q2T DΓ(−p, p1, p2, p3)

Z(p2
1)Z(p2

2)Z(p2
3)

p2
1 p2

2 p2
3

(3.2)

with the tensor T being given by

T := 45+9z12z13z23 −ζ
(
9+9(z01z03z13 + z01z02z12 + z02z03z23)

+3
(
z2

01 + z2
02 + z2

03 + z2
12 + z2

13 + z2
23 − z2

01z2
23 − z2

02z2
13 − z2

03z2
12
)

(3.3)

+3(z01z02z13z23 + z01z03z12z23 + z02z03z12z13)
)
,

and zi j := pi · p j/
√

p2
i p2

j . Choosing now a specific momentum partitioning, p1 = q1, p2 = p+
q2, p3 =−q1 −q2, and integrating out those angles which do not appear in the integrand we arrive
at

Πpro j
sunset =−Z4g4N2

c

3(2π)6

∫ Λ

0
dq1

∫ Λ

0
dq2

∫ 1

−1
dz1

√
1− z2

1

∫ 1

−1
dz2

√
1− z2

2

∫ 1

−1
dy

q1q3
2 T DΓ(−p,q1, p+q2,−q1 −q2)

Z(q2
1)Z((p+q2)

2)Z((q1 +q2)
2)

(p+q2)2(q1 +q2)2 . (3.4)

To gain insight into the UV behavior of Eq. (3.4) a method which has proven to be very useful
in the UV analysis of DSEs in asymptotically free theories is the so-called y-max approximation
[2, 3]. In the high-momentum regime the gluon dressing function behaves according to the pertur-
bative logarithmic behavior. Due to this weak momentum dependence one can then safely neglect
the dependence of the dressing functions on the angles. Since the cut-off can be choosen arbitrar-
ily large the largest contributions to the UV behaviour will originate from the momentum region
Λ > q1,q2 > p. For the sunset additionally we have to assume that exceptional momenta will not
contribute significantly to the integral which for the employed non-perturbative gluon propagators
is justified due to their infrared (IR) suppression. Here we implement a scaling solution, which
even vanishes for p2 → 0. Under these assumptions one can integrate over the angles analytically
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and obtains

Πymax
sunset =−Z4g4N2

c

3(2π)6

∫ Λ

p
dq1

∫ Λ

p
dq2DΓ(−p,q1, p+q2,−q1−q2)Z(q2

1)Z((p+q2)
2)Z((q1+q2)

2) I≷ .

(3.5)
For q1 > q2 the integrand I≷ is given by,

I≷ =−189π2

32
q2

q1
(ζ −4)+

9π2

32
q3

2

q3
1
(ζ −4)− 9π2

32
p2q2

q3
1

(ζ −1) (3.6a)

and for q2 > q1 one gets,

I≷ =−189π2

32
q1

q2
(ζ −4)+

9π2

32
q3

1

q3
2
(ζ −4)− 27π2

32
p2q1

q3
2

+
3π2

16
p2q3

1

q5
2

(6+ζ )−ζ
15π2

32

(
p4q3

1

q7
2

+
p2q5

1

q7
2

−
p4q5

1

q9
2

)
. (3.6b)

The explicit expressions Eqs. (3.6) allow to identify the quadratic divergences and construct a
subtraction term such that upon integration the quadratic divergences are canceled for both cases.
This procedure provides a “regulated” tensor structure,

T̃ = T − (ζ −4)
(
−225

16
+

9
4
(z12 +3z01)

)
. (3.7)

If we replace T in Eq. (3.4) by T̃ , no quadratic divergences will appear.
A few comments are in order here. First note that the quadratic divergences come with a factor

ζ −4. This means that the quadratic divergences of the sunset only contribute to the δµν -component
of the gluon polarization tensor as is expected from general considerations [1]. Second, in the
past two-loop diagrams were not included due to the complications provided by their overlapping
divergences. However, using the regulated tensor structure Eq. (3.7) the quadratic divergences are
cancelled directly. As the explicit form of this subtraction term depends on the particularly chosen
momentum partitioning this has become possible due to the specific choice taken, and whether a
similar subtraction is possible for general momentum partitionings remains to be clarified.

4. A model for the four-gluon vertex dressing

The unknown required input into Eq. (3.4) is the dressing function of the four-gluon vertex.
While the UV behavior of this function is known from perturbation theory only little is known
when one of the momenta becomes small.3 In refs. [21, 22] an infrared behavior of the four-gluon
vertex consistent with the scaling solutions of the DSEs has been determined. Under consideration
of the available information we model the vertex dressing function as a product of the propagator
dressing functions:

DΓ(−p, p1, p2, p3) =
1
Z4

[
G(p2

1)G(p2
2)
]α

Z(p2
3)

[
Z(p2

1)Z(p2
2)
]1−β , (4.1)

3To our knowledge there is no lattice study of this object.
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Figure 2: Left: The Landau gauge gluon dressing function with (blue) and without (black) contributions
from the sunset diagram compared to lattice data of Ref. [18]. Right: Contributions of the one-loop
diagrams and the sunset after subtracting quadratic divergencies.

where we introduced two parameters α and β which are determined by the UV and IR behaviour.
For high energies the dressing function are required to obey a logarythmic scaling DΓ ∼ (logx)−γ+2δ

with the anomalous dimensions of the gluon propagator, γ = −13
22 , and the ghost propagator δ =

− 9
44 , respectively. To be consistent with the scaling solution in the IR we require DΓ ∼ (x)−4κ with

the IR scaling exponent κ ≈ 0.59535 [23, 21]. Thus we can determine the parameters to α =−4δ
and β = 1

2(1−4δ ).
In this first preliminary investigation this model has been chosen mainly due to technical rea-

sons. Besides the missing Bose symmetry the different treatment of the propagators even within
the sunset diagram calls for improvement. As we divide out the dressing function with argument
p3 this propagator becomes undressed which allows us to integrate over two of the three angles
analytically. This saves a substantial amount of computing time. We will improve on this short-
coming via transporting these numerical calculations onto GPUs along the lines of Ref. [24]. This
should enable us to calculate all angular integrals numerically which is a prerequisite to keep Bose
symmetry in the employed four-gluon-vertex model.

For the numerical calculation one still needs to choose a partitioning of the two radial integrals.
In addition, there exist integrable divergences for q1 −q2 → 0 which have to be treated seperately.
Details will be published elsewhere.

5. Results and outlook

Within the approximations described above we included the sunset diagram into a Landau
gauge DSE study. As one can see from Fig.2 the influence of the sunset diagram is astonishingly
small. This is in contrast to expectations that the two-loop terms should contribute significantly
in the mid-momentum regime. Even our preliminary results provide compelling evidence that the
sunset diagram is completely unimportant in the gluon propagator DSE. At this point two remarks
are in order: First, the precise form of the three-guon vertex in the one-gluon-loop term is very
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Figure 3: The proposed equations for ghosts and diagonal gluon in the MAG.

important as can be seen from very recently obtained results [15] also presented on this conference.4

An improvement of the three-gluon vertex model, especially the inclusion of a sign flip at small
momenta, leads to an enhancement of the gluon dressing function in the mid-momentum regime.
Second, preliminary results on including the squint diagram in the gluon propagator DSE [26]
point towards a small but still sizeable contribution. Here the use of a Bose symmetric four-gluon
dressing function is then mandatory to allow for definite conclusions.

6. Implications on the Maximally Abelian gauge

As mentioned an IR analysis of the Yang-Mills propagator DSEs and Renormalization Group
Equations in the Maximally Abelian gauge showed [11] that the sunset diagram is an IR leading
term. We propose here a minimal set of coupled equations for the propagators of ghost and diagonal
gluon in the Maximally Abelian gauge which is depicted in Fig. 3. It is the minimal truncation of
the corresponding DSEs which contains the leading UV and IR behaviour. The corresponding one-
loop terms give the correct UV behavior [9], where as the sunset diagrams give the IR behavior
[11]. Also there are only two vertices which have to be modeled to close the system, the three-point
(Ac̄c)- and the four point (AAc̄c)-vertex. Again we assume a tree-level structure for these vertices
dressed with a scalar function which reproduces the correct UV and IR behaviour of these Green
functions. The quadratic divergences can be subtracted along the same line as presented above: A
y-max approximation allows for the construction of a regularized tensor structure in the integral
kernels. The logarthmic divergences are then treated in a MOM-scheme. Numerical studies of
this set of equations as a starting point of an investigation of the Yang-Mills propagators in the
Maximally Abelian gauge are in progress.
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