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Lattice BRST without 0/0 problem Lorenz von Smekal

1. Introduction

The covariant continuum formulation of gauge theories in terms of local field systems relies
on the existence of a well-defined and unbroken Becchi-Rouet-Stora-Tyutin (BRST) symmetry. In
particular, the corresponding nilpotent BRST charge is needed to define the physical subspace of
the indefinite metric state-space of covariant gauge theory in generalization of the Gupta-Bleuler
condition in QED. This is all very well understood in perturbation theory. Beyond that, however,
it is not so clear how to globally define such a BRST charge in presence of the inevitable Gribov
copies. On the lattice, this problem is already present in the compact U(1) gauge theory. Already
there, there is a perfect cancellation of contributions from copies with even and odd numbers of
negative eigenvalues of the Faddeev-Popov operator (i.e., even/odd Morse index) to the measure in
a standard BRST formulation. This cancellation is the origin of the famous Neuberger 0/0 problem
of lattice BRST [1]. Thus, this problem needs to be solved in the compact U(1) gauge theory
already. The good news will be, however, that a solution to the Neuberger 0/0 problem in compact
U(1), where it is a lattice artifact, is also suited for SU(N) gauge theories with little extra work. It
is simply applied to the maximal Abelian subgroup U(1)N−1, the coset space SU(N)/U(1)N−1 has
no extra 0/0 problem [2]. The corresponding lattice BRST for gauge fixing the SU(2)/U(1) coset
space was explicitly constructed already in Ref. [3].

After a short review of the standard procedure and its failure in the next section, we will walk
through the U(1) problem in more detail in a simple one-link model in Section 3. We explain the
necessary extensions for SU(2) in Section 4 and provide our summary and outlook in Sec. 5.

2. Standard (double) BRST on the lattice

The basic idea behind formulating (double) BRST on a finite lattice with the methods of SUSY
quantum mechanics is to formulate a topological Witten model on the lattice gauge group whose
partition function is to be used as the gauge-fixing device. BRST s and anti-BRST s̄ variations are
thereby introduced as infinitesimal right multiplications of the SU(N) gauge group elements g by
Lie-algebra valued, anti-Hermitian ghost and anti-ghost fields c† =−c and c̄† =−c̄,

sg = gXaca = gc , s̄g = gXac̄a = gc̄ , (2.1)

where [Xa,Xb] = f abcXc with trXaXb = −1
2 δ ab. The partition function of this topological model

must be independent of the link variables Ui j connecting nearest neighbor sites i ∼ j which only
enter via the gauge-fixing potential VU [g]. In the standard case, for example,

VU [g] =− ∑
i, j∼i

RetrUg
i j , where Ug

i j = g†
i Ui jg j . (2.2)

In terms of these, the BRST and anti-BRST transformations then take the more familiar form,

sUg
i j =−ciU

g
i j +Ug

i jc j , s̄Ug
i j =−c̄iU

g
i j +Ug

i jc̄ j . (2.3)

The (anti-)BRST transformations of ghost, anti-ghost and Nakanishi-Lautrup fields ba act per site
and are the same as in the continuum [4],

sca =−1
2(c× c)a s̄c̄a =−1

2(c̄× c̄)a

sc̄a = ba− 1
2(c̄× c)a s̄ca =−ba− 1

2(c̄× c)a

sba =−1
2(c×b)a− 1

8

(
(c× c)× c̄

)a s̄ba =−1
2(c̄×b)a + 1

8

(
(c̄× c̄)× c

)a
(2.4)
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where (c× c)a ≡ f abccbcc, etc. Ghost number and Faddeev-Popov conjugation are part of a global
SL(2,R) symmetry in this extended double BRST formulation with gauge-fixing action [5],

Sgf =−i ss̄
(

VU [g]+ i
ξ

2 ∑
i

c̄ici

)
= ∑

i

(
ibiFi[Ug]+ ic̄iMi[Ug,c]+

ξ

2
bibi +

ξ

8
(c̄i× ci)

2
)
. (2.5)

Here we dropped the color indices for brevity. The Faddeev-Popov operator M is the Hessian of the
Morse potential VU [g], and as such it is Hermitian for all ξ . In Landau gauge, ξ = 0, the b-fields
establish Fi[Ug] = 0 and the corresponding gauge-fixing partition function evaluates to

Zgf =
∫

d[g,b, c̄,c]exp{−Sgf}
ξ=0
= ∑

copies

detMF

|detMF |
. (2.6)

This is the sign-weighted sum over all Gribov copies whose vanishing causes the 0/0 problem of
lattice BRST upon inserting Zgf into the unfixed partition function Z =

∫
d[U ]exp{−S[U ]} of the

gauge theory on the lattice. To see this explicitly one introduces with Neuberger a parameter t,

Sgf(t) =−i ss̄
(

t VU [g]+ i
ξ

2 ∑
i

c̄ici

)
, such that

d
dt

Zgf(t) = 0 , (2.7)

just as Zgf is independent of ξ because both terms in the action are separately BRST exact. More-
over observing that Zgf(t = 0) = 0 then establishes the 0/0 problem. The reason for this is that Zgf

computes the Euler characteristic χ of the lattice gauge group which is zero,

Zgf = χ(SU(N)×#sites) = χ(SU(N))#sites, χ(SU(N)) = χ(S3)χ(S5) · · ·χ(S2N−1) = 0 , (2.8)

because of the N − 1 odd spheres that make up the group manifold. And just as this zero was
obtained for ξ = 0 in (2.6) via the Poincaré-Hopf theorem [6], here it follows from one Gauss-
Bonnet integral expression for χ(SU(N)) per site on the lattice [5],

Zgf(t = 0) =
∫

d[g,b, c̄,c] exp
{
−∑

i

(
ξ

2
bibi +

ξ

8
(c̄i× ci)

2
)}

. (2.9)

One possible remedy is to introduce a Curci-Ferrari mass term [7] by replacing Sgf with

Smgf =−i(ss̄+ im2)
(

t VU [g]+ i
ξ

2 ∑
i

c̄ici

)
. (2.10)

This decontracts the extended double BRST algebra. BRST transformations are no-longer nilpo-
tent, and the different Gribov copies get reweighted by the explicit BRST breaking proportional to
the Curci-Ferrari mass parameter m2. Instead of (2.6) in Landau gauge one then obtains

Zmgf
ξ=0
= ∑

copies
sign

(
detMF

)
exp{−m2tVU [g]} , (2.11)

which lifts the cancellation of Gribov copies at the price of unitarity violations in the corresponding
continuum theory at finite m2. It also regulates the t = 0 limit, e.g., explicitly for SU(3) [5],

Zmgf(t = 0) ∝ (ξ m4)#sites
(

1+4ξ m4 +
64
15

(ξ m4)2 +
64
45

(ξ m4)3
)#sites

, (2.12)
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and thus the 0/0 problem. One might then hope to be able to restore unitarity and compute observ-
ables in limit m2 → 0 from l’Hospital’s rule. Another way forward is to change the gauge-fixing
potential. For SU(2) for example it was suggested in [8, 9] to replace

VU [g] =−∑
links

1
2

trUg by ṼU [g] =−∑
links

ln
(
1+

1
2

trUg) . (2.13)

Near the identity they are essentially the same, so they are equivalent, perturbatively, and they both
lead to the same continuum formulation. ṼU is singular, however, whenever a gauge orbit passes
through the south pole. This amounts to setting up a Witten model, but instead of χ(S3) = 0 for
SU(2) based on

χ(RP2) =
1
2

χ(S2) = 1 , (2.14)

for the SU(2)/U(1) coset. The difference between the two lies in the way the diagonal U(1)
subgroup is treated. We discuss this in a toy-model next.

3. One-link model for compact U(1)

In order to illustrate the close connection to SUSY quantum mechanics we consider the sim-
plest case of a single compact U(1) degree of freedom ϕ corresponding to a one-link model [10, 7].
In addition we use a single angle θ ∈ (−π,π] for a non-periodic gauge transformation ϕθ ≡ ϕ−θ

which we furthermore allow to depend on a fictitious time τ ∈ S1. With periodic boundary con-
ditions for all gauge dof’s θ , b and Grassmann c̄, c, we can then write down an action for the
corresponding toy model in SUSY quantum mechanics [6],

Sgf =
∫ 1

0
dτ

[
i
(

θ̇ + t
∂Vϕ

∂θ

)
b+

ξ

2
b2 + c̄

( d
dτ

+ t
∂ 2Vϕ

∂θ 2

)
c
]
. (3.1)

The corresponding partition function is independent of gauge parameters t, ξ and link angle ϕ ,
and it is semiclassically exact. If the height function on the circle is used as the Morse potential,
Vϕ(θ) = 1− cos(ϕ−θ) for the standard lattice Landau gauge, one thus readily confirms that

Zgf = χ(S1) =
1
|t|
(
t− t

)
= 0 . (3.2)

The same will be true for any continuous periodic potential V with isolated zeroes on the circle.
The link angle is inessential here and will also be dropped in the following. We need to introduce a
singularity in V to allow odd numbers of critical points and thus avoid this topological obstruction.
Before we proceed, we note that after redefining t→ ξ t and then rescaling ξ τ → τ ,

Sgf =
∫

ξ

0
dτ

[
i
(

θ̇ + t
∂V
∂θ

)
b+

1
2

b2 + c̄
( d

dτ
+ t

∂ 2V
∂θ 2

)
c
]
. (3.3)

This form allows to identify Landau gauge as the “high temperature” limit ξ → 0 of a Witten
model in which all non-constant modes decouple, and in which the τ-dependence is thus gone
again. The gauge-fixing partition function is given by the path integral representation of the Witten
index W = ∆(ξ ) of the model in heat-kernel regularization,

Zgf =
∫

D [θ ,b, c̄,c] exp{−Sgf}= ∆(ξ ) = Tr
(
(−1)F e−ξ H)= Tr

(
e−ξ H−

)
−Tr

(
e−ξ H+

)
. (3.4)
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Using c̄ = c† for the Grassmann ghost in the operator language BRST and anti-BRST charges are
identified with the (N = 2) complex supercharges Q, Q† and generalized ladder operators A, A†,

Q =− i√
2

bc† ≡ Aσ+ =
1√
2

(
d

dθ
+Φ(θ)

)
σ+ ,

Q† =
i√
2

b†c≡ A†
σ− =

1√
2

(
− d

dθ
+Φ(θ)

)
σ− ,

(3.5)

of the Witten model with SUSY potential Φ(θ) = tV ′(θ) and partner Hamiltonians

H± =
p2

2
+

1
2

Φ
2(θ)± 1

2
Φ
′(θ)≡ p2

2
+V±(θ) . (3.6)

We can thus immediately write down the normalizable zero-energy ground state solutions to(
± d

dθ
+Φ(θ)

)
φ
∓
0 (θ) = 0 (3.7)

on the finite interval θ ∈ [−π,π] with periodic boundary conditions φ(−π) = φ(π). Whether the
Witten index vanishes or not only depends on what we choose for the (pre)potential V (θ).

Standard lattice Landau gauge thus corresponds to V (θ) = 1− cosθ with SUSY potential
Φ(θ) = t sinθ , and isospectral partner Hamiltonians with potentials V±(θ) = 1

2(t
2 sin2

θ ± t cosθ).
For any value of t they each have a normalizable zero-energy ground state with wave function

φ
±
0 (θ) =C exp{±t cosθ} . (3.8)

As before, the Witten index counting the number of bosonic minus fermionic ground states is zero,
∆ = n−−n+ = 1−1 = 0.

For the modified lattice Landau gauge, on the other hand, with V (θ) =−2ln
(
(1+ cosθ)/2

)
,

and SUSY potential Φ(θ) = 2t tan(θ/2), the partner potentials

V±(θ) =
1
8

(
4t(4t±1)
cos2(θ/2)

− (4t)2
)

(3.9)

belong to the class of shape-invariant symmetric Pöschl-Teller potentials with good SUSY [11],
∆ = 1, and a unique bosonic ground state with wave function

φ
−
0 (θ) =C

(
cos(θ/2)

)4|t|
. (3.10)

The ground-state wave functions for both cases are sketched in Fig. 1. As long as the Witten index
W = ∆(ξ ) = Zgf is non-zero, the corresponding SUSY on the gauge group cannot break, and we
will thus be guaranteed to have a well-defined and unbroken BRST symmetry as well. The shape-
invariant Pöschl-Teller oscillator for compact U(1) has good SUSY, can be solved exactly and it is
straightforwardly generalized to a one-dimensional chain.

Before we continue, it will be useful to write the U(1) toy model in (3.1) in a manifestly coor-
dinate and metric independent form [6]. For a general z = f (θ), the action in Eq. (3.1) becomes,

Sgf =
∫ 1

0
dτ

[
i
(
żg(z)+ tV ′(z)

)
b+

ξ

2
g(z)b2 + c̄

(
g(z)Dτ + t

(
V ′′(z)−Γ(z)V ′(z)

))
c
]
. (3.11)

5
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Figure 1: Ground-state wave functions for standard (left) and modified (right) gauge-fixing potentials in the
one-link U(1) model (3.1) with t/ξ = 2. With the height function on the circle the bosonic ground state
φ
−
0 (θ) centered around the North Pole at θ = 0 is always accompanied by a fermionic φ

+
0 centered around

the South Pole, θ = π . In contrast, the Pöschl-Teller potential has a unique bosonic ground state.

A particularly convenient coordinate is given by stereographically projecting the circle S1→R via
z = 2tan(θ/2) for the modified potential V (z) = 2ln(1+ z2/4), with one-dimensional metric

g(z) =
1

(1+ z2/4)2 , Γ =
d
dz

ln
√

g =
−z/2

1+ z2/4
, (3.12)

and covariant derivative Dτ = d/dτ +Γż. The fact that Zgf = W = 1, is then readily verified once
more from the path integral representation (3.4) with the simple Nicolai map η ≡ ż/(1+z2/4)+ tz.

4. From compact U(1) to SU(2)

Since we intend to use the supersymmetric Pöschl-Teller oscillator also for a U(1) subgroup
in SU(2) we first focus on the two-dimensional coset SU(2)/U(1) ' S2 (per site). The Euler
characteristic of a two-dimensional compact manifold M is given by the integral over its Gauss
curvature K = R12

12, the only independent component of the Riemann curvature tensor Ri jkl in 2
dimensions,

χ(M ) =
1

2π

∫
M

K dv . (4.1)

In particular, K = 1/R2 for a sphere S2
R of radius R, dv = R2dΩ and the Euler characteristic is of

course independent of R,

χ(S2
R) = χ(S2) =

1
2π

∫
S2

dΩ = 2 . (4.2)

A representation of this same Gauss-Bonnet formula which however holds for compact manifolds
without boundary of any even dimension 2n involves 2n pairs of Grassmann variables c̄, c, see [6],

χ(M ) =
∫

M
d2nx

∫
R2n

d2nb
(2π)2n

∫
d[c̄,c] exp

{
−ξ

2
bib jgi j +

ξ

4
Ri jkl c̄ickc̄ jcl

}
. (4.3)

For odd-dimensional manifolds the corresponding result is automatically zero as it must because
the exponential only produces even powers of the Grassmann variables. For the even-dimensional
spheres S2n

R it is straightforward to verify that χ(S2n
R ) = 2 from this formula. This can be done

explicitly, e.g., with again using stereographic coordinates~x=∈R2n with x= 2R tan(θ/2), where θ

is the azimuthal angle, metric gi j = (1+x2/(2R)2)−2 δi j and curvature Ri jkl = R−2(gikg jl−gilg jk).

6
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For the projective space RP2 one either integrates only over one hemisphere to the equator at
x = 2R or simply divides the full integral over~x ∈ R2 for S2 by two as mentioned above. Since the
Gauss-Bonnet integral for the Euler characteristic of a sphere is independent of its radius R we may
as well integrate χ(S2

R) over all R with unit weight, 1 =
∫

dRw(R), without changing the result, i.e.,
χ(S2) =

∫
dR χ(S2

R)w(R). For this normalized integral we use the Witten index W = Zgf = 1 of the
Pöschl-Teller oscillator with Sgf from (3.11) for U(1) in the last section by identifying the radius R
of the two-sphere as R = z = 2tan(θ/2) where θ is now the azimuthal angle of S3 for SU(2).

What we have then achieved is to integrate in our final gauge-fixing partition function Zgf for
SU(2) over the whole group manifold, however with θ ∈ (−π,π) in the Pöschl-Teller oscillator
rather than [0,π) for the usual azimuthal angle of S3. The remaining two S3 coordinates ~x then
parametrize RP2 instead of S2, hence we include a factor 1/2 (per site). The partition function for
the corresponding one-link model for SU(2) then explicitly becomes

ZSU(2)
gf =

1
2

∫
D [z,bz, c̄z,cz]D [x,bx, c̄x,cx] exp{−S(x)gf [x,bx, c̄x,cx]−S(z)gf [z,bz, c̄z,cz]} , (4.4)

with S(z)gf [z,b, c̄,c] for the Pöschl-Teller oscillator as given in (3.11) and

S(x)gf [x,b, c̄,c] =
∫ 1

0
dτ

[
igi jẋib j +

ξ

2
gi jbib j− ξ

4
Ri jkl c̄ickc̄ jcl + c̄igi j(Dτc) j

]
, (4.5)

with i, j = 1,2. Since we did not need to introduce a Morse potential on S2, the action in (4.5) is
itself the t → 0 limit of a Witten model to compute W = χ(S2). In this limit, only the constant
modes contribute and the path integral reduces to the corresponding Gauss-Bonnet integral (4.3).
If we however now change coordinates from z = 2tan(θ/2) ∈ R, or θ ∈ (−π,π), and ~x ∈ RP2

to general coordinates for S3, the Pöschl-Teller prepotential V (θ), here defined as function of the
class angle θ of SU(2), will then depend on all three of the new coordinates. For example, with
stereographic coordinates~x ∈ R3 with x = 2tan(θ/2) for S3, the total gauge fixing action, the sum
of S(x)gf and S(z)gf , will be of the form

S(tot)
gf =

∫ 1

0
dτ

[
i
(

ẋagab + t
∂V
∂xb

)
bb +

ξ

2
gabbabb− ξ

4
Rabcd c̄accc̄bcd (4.6)

+ c̄a
(

gab(Dτc)b + t
(

∂ 2V
∂xa∂xb −Γ

c
ab

∂V
∂xc

)
cb
)]

,

where now a,b,c = 1,2,3. It is important to remember here, however, that the metric gab is the
transformed product metric for S2×S1, an originally block-diagonal one consisting of a 2×2 metric
gi j for S2

R and a one-dimensional metric as in (3.12) for S1. Analogously, the curvature tensor here
is the correspondingly transformed Ri jkl = R−2(gikg jl−gilg jk) with i, j = 1,2 for S2

R. In particular,
it is not the curvature of S3 or SU(2) as in (2.5) with Rabcd = 1

2 εabeεe
cd which would produce the

Neuberger zero for t→ 0 and with a bounded gauge-fixing potential V .
A rescaling of the time interval as in (3.3) but now from τ ∈ [0,1] to τ ∈ [0, t] with ξ → tξ

shows that also for t → 0 only constant modes survive, likewise. With one such set of constant
modes to be integrated per site i on a lattice, where the only coupling of neighboring sites comes
from the gauge-fixing potential, the covariant gauge-fixing action for SU(2) without 0/0 problem

7
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becomes,

Sgf = ∑
i

{
i
∂V
∂xa

i
ba

i +
ξ

2
gabba

i bb
i −

ξ

4
Rabcd c̄a

i cc
i c̄b

i cd
i

}
+∑

i, j
c̄a

i

(
∂ 2V

∂xa
i ∂xb

j
−δi jΓ

c
ab

∂V
∂xc

j

)
cb

j

)]
. (4.7)

This is essentially of the same form as in (2.5). The only differences are in the S2×S1 metric and
curvature to be used here as discussed above, and the singular gauge-fixing potential with V ≡ ṼU [g]
from (2.13) in order to quantize one Pöschl-Teller oscillator for the SU(2) class angle per site on
the lattice so that the corresponding Zgf = χ(RP2)#sites = 1. The fact that the modified gauge-fixing
potential must have a singularity thereby only means that contributions from a gauge orbit close to
that singularity, for ṼU [g] in (2.13) at Ug =−1, are exponentially suppressed.

5. Summary and Outlook

Starting from a simple one-link model, we have described explicitly how the problem of gauge-
fixing on the lattice can be formulated in terms of the Witten index in SUSY quantum mechanics.
All excited states of gauge and ghost degrees of freedom then cancel and the gauge-fixing partition
function is determined entirely by the zero-energy ground states. Therefore, after gauge-fixing the
contribution of each gauge orbit is represented by the difference of bosonic and fermionic ground
states in the Witten model along this orbit. The BRST and anti-BRST symmetries then correspond
to the N = 2 supercharges of the Witten model, and as long as the Witten index is non-zero, one is
guaranteed to have a good SUSY and thus a well-defined and unbroken BRST symmetry.

This is all verified explicitly in our one-link model for U(1) and SU(2). The generalization to
a one-dimensional chain is straightforward. The Pöschl-Teller oscillators for compact U(1) only
have bosonic ground states in higher dimensions as well [8], there are thus no cancellations. Count-
ing these bosonic ground states in more than one dimension is a challenging problem, however [12].
The generalization to SU(N) is not entirely straightforward either and currently in progress.

This work was supported by the Helmholtz International Center for FAIR within the LOEWE
program of the State of Hesse and the European Commission, FP7-PEOPLE-2009-RG No. 249203.
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