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For a complete description of the physical properties of low-energy QCD, it might be advanta-
geous to first reformulate QCD in terms of gauge-invariant dynamical variables, before applying
any approximation schemes. Using a canonical transformation of the dynamical variables, which
Abelianises the non-Abelian Gauss-law constraints to be implemented, such a reformulation can
be achieved for QCD. The exact implementation of the Gauss laws reduces the colored spin-1
gluons and spin-1/2 quarks to unconstrained colorless spin-0, spin-1, spin-2 and spin-3 glueball
fields and colorless Rarita-Schwinger fields respectively. The obtained physical Hamiltonian can
then be rewritten into a form, which separates the rotational from the scalar degrees of freedom,
and admits a systematic strong-coupling expansion in powers of λ = g−2/3, equivalent to an
expansion in the number of spatial derivatives. The leading-order term in this expansion corre-
sponds to non-interacting hybrid-glueballs, whose low-lying masses can be calculated with high
accuracy by solving the Schrödinger-equation of the Dirac-Yang-Mills quantum mechanics of
spatially constant physical fields (at the moment only for the 2-color case). Due to the presence
of classical zero-energy valleys of the chromomagnetic potential for two arbitrarily large classical
glueball fields (the unconstrained analogs of the well-known constant Abelian fields), practically
all glueball excitation energy is expected to go into the increase of the strengths of these two
fields. Higher-order terms in λ lead to interactions between the hybrid-glueballs and can be taken
into account systematically using perturbation theory in λ .
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1. Introduction

The QCD action

S [A,ψ,ψ] =
∫

d4x
[
−1

4
Fa

µνFaµν +ψ
(
iγµDµ −m

)
ψ
]

(1.1)

is invariant under the SU(3) gauge transformations U [ω(x)]≡ exp(iωaτa/2)

ψω(x) =U [ω(x)] ψ(x), Aω
aµ(x)τa/2 =U [ω(x)]

(
Aaµ(x)τa/2+

i
g

∂µ

)
U−1[ω(x)]. (1.2)

Introducing the chromoelectric Ea
i ≡ Fa

i0 and chromomagnetic Ba
i ≡ 1

2 εi jkFa
jk and noting that the

momenta conjugate to the spatial Aai are Πai =−Eai, one obtains the canonical Hamiltonian

HC =
∫

d3x

[
1
2

E2
ai +

1
2

B2
ai(A)−gAai jia(ψ)+ψ (γi∂i +m)ψ −gAa0 (Di(A)abEbi −ρa(ψ))

]
, (1.3)

with the covariant derivative Di(A)ab ≡ δab∂i −g fabcAci in the adjoint representation.
Exploiting the time dependence of the gauge transformations (1.2) to put (see e.g. [1])

Aa0 = 0 , a = 1, ..,8 (Weyl gauge), (1.4)

and quantising the dynamical variables Aai, −Eai, ψαr and ψ∗
αr in the Schrödinger functional ap-

proach by imposing equal-time (anti-) commutation relations (CR) , e.g. −Eai = −i∂/∂Aai, the
physical states Φ have to satisfy both the Schrödinger equation and the Gauss laws

HΦ =
∫

d3x
[

1
2

E2
ai +

1
2

B2
ai[A]−Aai jia(ψ)+ψ (γi∂i +m)ψ

]
Φ = EΦ , (1.5)

Ga(x)Φ = [Di(A)abEbi −ρa(ψ)]Φ = 0 , a = 1, ..,8 . (1.6)

The Gauss law operators Ga are the generators of the residual time independent gauge transforma-
tions in (1.2), satisfying [Ga(x),H] = 0 and [Ga(x),Gb(y)] = i fabcGc(x)δ (x− y).
Furthermore, H commutes with the angular momentum operators

Ji =
∫

d3x
[
−εi jkAa jEak +Σi(ψ)+orbital parts

]
, i = 1,2,3 . (1.7)

The matrix element of an operator O is given in the Cartesian form

⟨Φ′|O|Φ⟩ ∝
∫

dA dψ dψ Φ′∗(A,ψ,ψ)OΦ(A,ψ,ψ) . (1.8)

The spectrum of Equ.(1.5)-(1.6) for the case of Yang-Mills quantum mechanics of spatially
constant gluon fields, has been found in [2] for SU(2) and in [3] for SU(3), in the context of a weak
coupling expansion in g2/3, using the variational approach with gauge-invariant wave-functionals
automatically satisfying (1.6). The corresponding unconstrained approach, a description in terms
of gauge-invariant dynamical variables via an exact implementation of the Gaws laws, has been
considered by many authors (o.a. [1],[4]-[10], and references therein) to obtain a non-perturbative
description of QCD at low energy, as an alternative to lattice QCD.

I shall first discuss in Section 2 the unphysical, but technically much simpler case of 2-colors,
and then show in Section 3 how the results can be generalised to SU(3).
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2. Unconstrained Hamiltonian formulation of 2-color QCD

2.1 Canonical transformation to adapted coordinates

Point transformation from the Aai,ψα to a new set of adapted coordinates, the 3 angles q j of
an orthogonal matrix O(q), the 6 elements of a pos. definite symmetric 3×3 matrix S, and new ψ ′

β

Aai (q,S) = Oak (q)Ski −
1

2g
εabc

(
O(q)∂iOT (q)

)
bc , ψα

(
q,ψ ′)=Uαβ (q)ψ ′

β , (2.1)

where the orthogonal O(q) and the unitary U (q) are related via Oab(q) = 1
2 Tr
(
U−1(q)τaU(q)τb

)
.

Equ. (2.1) is the generalisation of the (unique) polar decomposition of A and corresponds to

χi(A) = εi jkA jk = 0 (”symmetric gauge”). (2.2)

Preserving the CR, we obtain the old canonical momenta in terms of the new variables

−Eai(q,S, p,P) = Oak (q)
[
Pki + εkil

∗D−1
ls (S)

(
Ω−1

s j (q)p j +ρs(ψ ′)+Dn(S)smPmn

)]
. (2.3)

In terms of the new canonical variables the Gauss law constraints are Abelianised,

GaΦ ≡ Oak(q)Ω−1
ki (q)piΦ= 0 ⇔ δ

δqi
Φ = 0 (Abelianisation), (2.4)

and the angular momenta become

Ji =
∫

d3x
[
−2εi jkSm jPmk +Σi(ψ ′)+ρi(ψ ′)+orbital parts

]
. (2.5)

Equ.(2.4) identifies the qi with the gauge angles and S and ψ ′ as the physical fields. Furthermore,
from Equ.(2.5) follows that the S are colorless spin-0 and spin-2 glueball fields, and the ψ ′ colorless
reduced quark fields of spin-0 and spin-1. Hence the gauge reduction corresponds to the conversion
"color → spin". The obtained unusual spin-statistics relation is specific to SU(2).

2.2 Physical quantum Hamiltonian

According to the general scheme [1], the correctly ordered physical quantum Hamiltonian in
terms of the physical variables Sik(x) and the canonically conjugate Pik(x)≡−iδ/δSik(x) reads [8]

H(S,P)=
1
2
J −1

∫
d3x Pai J Pai +

1
2

∫
d3x
[
B2

ai(S)−Sai jia(ψ ′)+ψ ′ (γi∂i +m)ψ ′]
−J −1

∫
d3x

∫
d3y
{(

Di(S)maPim +ρa(ψ ′)
)
(x)J

⟨x a|∗D−2(S)|y b⟩
(

D j(S)bnPn j +ρb(ψ ′)
)
(y)
}
, (2.6)

with the Faddeev-Popov (FP) operator

∗Dkl(S)≡ εkmiDi(S)ml = εkli∂i −g(Skl −δkltrS), (2.7)

and the Jacobian J ≡ det |∗D|. The matrix element of a physical operator O is given by

⟨Ψ′|O|Ψ⟩ ∝
∫

S pos.def.

∫
ψ ′,ψ ′ ∏x

[
dS(x)dψ ′(x)dψ ′(x)

]
J Ψ′∗[S,ψ ′,ψ ′]OΨ[S,ψ ′,ψ ′]. (2.8)

The inverse of the FP operator and hence the physical Hamiltonian can be expanded in the number
of spatial derivatives, equivalent to a strong coupling expansion in λ = g−2/3.

3
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2.3 Coarse-graining and strong coupling expansion of the physical Hamiltonian in λ =g−2/3

Introducing an UV cutoff a by considering an infinite spatial lattice of granulas G(n,a) at
x = an (n ∈ Z3) and averaged variables

S(n) :=
1
a3

∫
G(n,a)

dx S(x) , (2.9)

and discretised spatial derivatives, the expansion of the Hamiltonian in λ = g−2/3 can be written

H =
g2/3

a

[
H0 +λ ∑

α
V

(∂ )
α +λ 2

(
∑
β

V
(∆)

β +∑
γ

V
(∂∂ ̸=∆)

γ

)
+O(λ 3)

]
. (2.10)

The "free" Hamiltonian H0 = (g2/3/a)H0 +Hm = ∑n HQM
0 (n) is the sum of the Hamiltonians of

Dirac-Yang-Mills quantum mechanics of constant fields in each box, and the interaction terms
V (∂ ),V (∆), .. leading to interactions between the granulas.

2.4 Zeroth-order: Dirac-Yang-Mills Quantum mechanics of spatially constant fields

Transforming to the intrinsic system of the symmetric tensor S, with Jacobian sinβ ∏i< j(ϕi −ϕ j),

S = RT (α,β ,γ) diag(ϕ1,ϕ2,ϕ3) R(α,β ,γ), ψ ′(i)
L,R = RT

i jψ̃
( j)
L,R, ψ ′(0)

L,R = ψ̃(0)
L,R, (2.11)

the "free" Hamiltonian in each box (volume V ) takes the form [9]

HQM
0 =

g2/3

V 1/3

[
H G +H D +H C

]
+

1
2

m

[(
ψ̃(0)†

L ψ̃(0)
R +

3

∑
i=1

ψ̃(i)†
L ψ̃(i)

R

)
+h.c.

]
, (2.12)

with the glueball part H G, the minimal-coupling H D, and the Coulomb-potential-type part H C

H G =
1
2

cyclic

∑
i jk

(
− ∂ 2

∂ϕ 2
i
− 2

ϕ 2
i −ϕ 2

j

(
ϕi

∂
∂ϕi

−ϕ j
∂

∂ϕ j

)
+(ξi − J̃Q

i )
2 ϕ 2

j +ϕ 2
k

(ϕ 2
j −ϕ 2

k )
2 +ϕ 2

j ϕ 2
k

)
, (2.13)

H D =
1
2
(ϕ1 +ϕ2 +ϕ3)

(
Ñ(0)

L − Ñ(0)
R

)
+

1
2

cyclic

∑
i jk

(ϕi − (ϕ j +ϕk))
(

Ñ(i)
L − Ñ(i)

R

)
, (2.14)

H C =
cyclic

∑
i jk

ρ̃i(ξi − J̃Q
i + ρ̃i)

(ϕ j +ϕk)2 , (2.15)

and the total spin Ji = Ri j(χ) ξ j , [Ji,H] = 0 . (2.16)

The matrix elements become

⟨Φ1|O|Φ2⟩=
∫

dα sinβdβdγ
∫

0<ϕ1<ϕ2<ϕ3

dϕ1dϕ2dϕ3 (ϕ 2
1 −ϕ 2

2 )(ϕ 2
2 −ϕ 2

3 )(ϕ 2
3 −ϕ 2

1 )

∫
dψ ′dψ ′Φ∗

1OΦ2 .

The l.h.s. of Fig.1 shows the 0+ energy spectrum of the lowest pure-gluon (G) and quark-gluon
(QG) cases for one quark-flavor which can be calculated with high accuracy using the variational
approach. The energies of the quark-gluon ground state and the sigma-antisigma excitation are
lower than that of the lowest pure-gluon state. This is due to a large negative contribution from
⟨H D⟩, in addition to the large positive ⟨H G⟩, while ⟨H C⟩ ≃ 0 (see [9] for details).

Furthermore, as a consequence of the zero-energy valleys ”ϕ1 =ϕ2 = 0, ϕ3 arbitrary” of the
classical magnetic potential B2 = ϕ 2

2 ϕ 2
3 + ϕ 2

3 ϕ 2
1 + ϕ 2

1 ϕ 2
2 , practically all glueball excitation-energy

results from an increase of expectation value of the "constant Abelian field" ϕ3 as shown for the
pure-gluon case on the r.h.s. of Fig.1 (see [7] for details).

4
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Energy [g2/3]
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Figure 1: L.h.s.: Lowest energy levels for the pure-gluon (G) and the quark-gluon case (QG) for 2-colors
and one quark flavor. The energies of the quark-gluon ground state and the sigma-antisigma excitation are
lower than that of the lowest pure-gluon state. R.h.s. (for pure-gluon case and setting V ≡ 1): ⟨ϕ3⟩ is raising
with increasing excitation, whereas ⟨ϕ1⟩ and ⟨ϕ2⟩ are practically constant, independent of whether spin-0
(dark boxes) or spin-2 states (open circles).

2.5 Perturbation theory in λ and coupling constant renormalisation in the IR

Including the interactions V (∂ ),V (∆) using 1st and 2nd order perturbation theory in λ = g−2/3

give the result [8] (for pure-gluon case and only including spin-0 fields in a first approximation)

E+
vac = N

g2/3

a

[
4.1167+29.894λ 2 +O(λ 3)

]
, (2.17)

E(0)+
1 (k)−E+

vac =
[

2.270+13.511λ 2 +O(λ 3)
] g2/3

a
+0.488

a
g2/3 k2 +O((a2k2)2), (2.18)

for the energy of the interacting glueball vacuum and the spectrum of the interacting spin-0 glueball.
Lorentz invariance demands E =

√
M2 + k2 ≃ M+ 1

2M k2, which is violated in this 1st approxima-
tion by a factor of 2. In order to get a Lorentz invariant result, J = L+S states should be considered
including also spin-2 states and the general V (∂∂ ).

Independence of the physical glueball mass

M =
g2/3

0
a

[
µ + cg−4/3

0

]
(2.19)

of box size a, one obtains

γ(g0)≡ a
d
da

g0(a) =
3
2

g0
µ + cg−4/3

0

µ − cg−4/3
0

(2.20)

which vanishes for g0 = 0 (pert. fixed point) or g4/3
0 =−c/µ (IR fixed point, if c < 0). For c > 0

for c > 0 : g2/3
0 (Ma) =

Ma
2µ

+

√(
Ma
2µ

)2

− c
µ

, a > ac := 2
√

cµ/M (2.21)

My (incomplete) result c(0)1 /µ(0)
1 = 5.95 suggests, that no IR fixed points exist. critical coupling

g2
0|c = 14.52 and ac ∼ 1.4 fm for M ∼ 1.6 GeV.
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3. Symmetric gauge for SU(3)

Using the idea of minimal embedding of su(2) in su(3) by Kihlberg and Marnelius [4]

τ1 := λ7 =

 0 0 0
0 0 −i
0 i 0

 τ2 :=−λ5 =

 0 0 i
0 0 0
−i 0 0

 τ3 := λ2 =

0 −i 0
i 0 0
0 0 0


τ4 := λ6 =

 0 0 0
0 0 1
0 1 0

 τ5 := λ4 =

 0 0 1
0 0 0
1 0 0

 τ6 := λ1 =

0 1 0
1 0 0
0 0 0


τ7 := λ3 =

 1 0 0
0 −1 0
0 0 0

 τ8 := λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 (3.1)

such that the corresponding non-trivial non-vanishing structure constants, [ τa
2 ,

τb
2 ] = icabc

τc
2 , have at

least one index ∈ {1,2,3}, the symmetric gauge, Equ.(2.2), can be generalised to SU(3) [5, 10],

χa(A) =
8

∑
b=1

3

∑
i=1

cabiAbi = 0 , a = 1, ...,8 (”symmetric gauge” for SU(3)). (3.2)

Carrying out the coordinate transformation [10]

Aak

(
q1, ..,q8, Ŝ

)
= Oaâ (q) Ŝâk −

1
2g

cabc
(
O(q)∂kOT(q)

)
bc , ψα

(
q1, ..,q8,ψRS)=Uαβ̂ (q)ψRS

β̂

Ŝâk ≡
(

Sik

SAk

)
=



Sik pos. def.

W0 X3−W3 X2+W2

X3+W3 W0 X1−W1

X2−W2 X1+W1 W0

−
√

3
2 Y1−1

2W1

√
3

2 Y2−1
2W2 W3

−
√

3
2 W1−1

2Y1

√
3

2 W2−1
2Y2 Y3


, câb̂kŜb̂k = 0 , (3.3)

an unconstrained Hamiltonian formulation of QCD can be obtained. The existence and uniqueness
of (3.3) can be investigated by solving the 16 equs.

ŜâiŜâ j = AaiAa j (6 equs.) ∧ dâb̂ĉŜâiŜb̂ jŜĉk = dabcAaiAb jAck (10 equs.) (3.4)

for the 16 components of Ŝ in terms of 24 given components A.
Analysing the Gauss law operators and the unconstrained angular momentum operators in

terms of the new variables in analogy to the 2-color case, it can be shown that the original con-
strained 24 colored spin-1 gluon fields A and the 12 colored spin-1/2 quark fields ψ (per flavor)
reduce to 16 physical colorless spin-0, spin-1, spin-2, and spin-3 glueball fields (the 16 components
of Ŝ) and a colorless spin-3/2 Rarita-Schwinger field ψRS (per flavor), respectively. As for the 2-
color case, the gauge reduction converts color → spin, which might have important consequences
for low energy Spin-Physics. In terms of the colorless Rarita-Schwinger fields the ∆++(3/2) could
have the spin content (+3/2,+1/2,−1/2) in accordance with the Spin-Statistics-Theorem.

6
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Transforming to the intrinsic system of the embedded upper part S of Ŝ (see [10] for details)

S = RT (α,β ,γ) diag(ϕ1,ϕ2,ϕ3) R(α,β ,γ), ∧ Xi → xi, Yi → yi, .., ∧ ψRS → ψ̃RS, (3.5)

one finds that the magnetic potential B2 has the zero-energy valleys ("constant Abelian fields")

B2 = 0 : ϕ3 and y3 arbitrary ∧ all others zero (3.6)

Hence, practically all glueball excitation-energy should result from an increase of expectation val-
ues of these two "constant Abelian fields", in analogy to SU(2) . Furthermore, at the bottom of the
valleys the important minimal-coupling-interaction of ψ̃RS (analogous to (2.14)) becomes diagonal

H D
diag =

1
2

ψ̃(1, 1
2 )†

L [(ϕ3λ3 + y3λ8)⊗σ3] ψ̃
(1, 1

2 )
L − 1

2
ψ̃( 1

2 ,1)†
R [σ3 ⊗ (ϕ3λ3 + y3λ8)] ψ̃

( 1
2 ,1)

R . (3.7)

Due to the difficulty of the FP-determinant (see [10]), precise calculations are not possible yet.
Note, however, that in one spatial dimension the symmetric gauge for SU(3) reduces to

A(1d) =



0 0 A13

0 0 A23

0 0 A33

0 0 A43

0 0 A53

0 0 A63

0 0 A73

0 0 A83


→ Ŝ(1d) = Ŝ(1d)

intrinsic =



0 0 0
0 0 0
0 0 ϕ3

0 0 0
0 0 0
0 0 0
0 0 0
0 0 y3


(3.8)

which consistently reduces the Equ.(3.4) for given A3 to

ϕ 2
3 + y2

3 = Aa3Aa3 ∧ ϕ 2
3 y3 −3y3

3 = dabc Aa3Ab3Ac3 (3.9)

with 6 solutions separated by zero-lines of the FP-determinant ("Gribov-horizons"). Exactly one
solution exists in the "fundamental domain" 0 < ϕ3 < ∞ ∧ ϕ3/

√
3 < y3 < ∞, and we can replace∫ +∞

−∞

8

∏
a=1

dAa3 →
∫ ∞

0
dϕ3

∫ ∞

ϕ3/
√

3
dy3 ϕ 2

3
(
ϕ 2

3 −3y2
3
)2 ∝

∫ ∞

0
rdr
∫ π/2

π/6
dψ cos2(3ψ). (3.10)

For two spatial dimensions, one can show that (putting in Equ.(3.3) W1 ≡ X1,W2 ≡−X2)

A(2d) =



A11 A12 0
A21 A22 0
A31 A32 0
A41 A42 0
A51 A52 0
A61 A62 0
A71 A72 0
A81 A82 0


→ Ŝ(2d)

intrinsic =



ϕ1 0 0
0 ϕ2 0
0 0 0
0 x3 0
x3 0 0
2x2 2x1 0

−
√

3
2 y1 − 1

2 x1

√
3

2 y2 +
1
2 x2 0

−
√

3
2 y1 +

1
2 x1 −

√
3

2 y2 +
1
2 x2 0


(3.11)

consistently reduces (3.4) to a system of 7 equs. for 8 physical fields (incl. rot.-angle γ), which,
adding as an 8th equ. (dâb̂ĉŜb̂1Ŝĉ2)

2 = (dabcAb1Ac2)
2, can be solved numerically for randomly gen-

erated A(2d), again yielding solutions separated by horizons. Restricting to a fundamental domain∫ +∞

−∞

8

∏
a,b=1

dAa1dAb2 →
∫

dγ
∫

0<ϕ1<ϕ2<∞
dϕ1dϕ2(ϕ1 −ϕ2)

∫
R1(ϕ1,ϕ2)

dx1dx2dx3

∫
R2(x1,x2,x3,ϕ1,ϕ2)

dy1dy2 J

7
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Due to the difficulty of the FP-determinant, I have, however, not yet succeeded in a satisfactory
description of the regions R1 and R2. For the general case of three dimensions, I have found several
solutions of the Equ.(3.4) numerically for a randomly generated A, but to write the corresponding
unconstrained integral over a fundamental domain is a difficult, but I think solvable, future task.

4. Conclusions

Using a canonical transformation of the dynamical variables, which Abelianises the non-
Abelian Gauss-law constraints to be implemented, a reformulation of QCD in terms of gauge in-
variant dynamical variables can be achieved. The exact implementation of the Gauss laws reduces
the colored spin-1 gluons and spin-1/2 quarks to unconstrained colorless spin-0, spin-1, spin-2 and
spin-3 glueball fields and colorless Rarita-Schwinger fields respectively. The obtained physical
Hamiltonian admits a systematic strong-coupling expansion in powers of λ = g−2/3, equivalent
to an expansion in the number of spatial derivatives. The leading-order term in this expansion
corresponds to non-interacting hybrid-glueballs, whose low-lying masses can be calculated with
high accuracy (at the moment only for the unphysical, but technically much simpler 2-color case)
by solving the Schrödinger-equation of Dirac-Yang-Mills quantum mechanics of spatially constant
fields. Higher-order terms in λ lead to interactions between the hybrid-glueballs and can be taken
into account systematically, using perturbation theory in λ , allowing for the study of the difficult
questions of Lorentz invariance and coupling constant renormalisation in the IR.
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