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1. Motivation

The mechanisms behind the most prominent features of QCD, namely confinement and dy-
namical chiral symmetry breaking (DχSB), are still not completely understood. Moreover, a pos-
sible relation between these two phenomena is by no means obvious. Nevertheless, lattice sim-
ulations [1, 2] performed at finite temperature show that the corresponding phase transitions lie
remarkably close together, which is a surprising result since the confinement phase transition, in-
dicated by a breaking of center symmetry, is mainly driven by gluodynamics as pointed out in [3],
whereas strong quark interactions seem to be responsible for the chiral phase transition. Moreover,
a certain quark-gluon interaction strength is needed in order to generate mass dynamically in the
infrared region. The aim is to shed more light on these effects by studying the quark-gluon ver-
tex since this object is the link between the Yang-Mills and the matter sector of the theory. As
both phenomena are related to the low-energy region of the theory a non-perturbative framework
is necessary in addition to perturbative techniques. Dyson-Schwinger equations (DSEs) are an ap-
propriate tool to explore the theory over a wide scope of momenta ranging from the deep infrared
up to the perturbative regime, see e.g., ref. [4, 5] and references therein. They build up to an infinite
tower of coupled integral equations such that carefully chosen truncations have to be applied in
order to evaluate the equations. Therefore, at some point a cooperation with other non-perturbative
methods such as lattice simulations is necessary in order to render the Dyson-Schwinger frame-
work reliable and robust and to acquire results which might be too difficult to obtain from a lattice
calculation.

In these proceedings we extend previous studies of the quark-gluon vertex [6, 7] by system-
atically improving on the employed truncations. The starting point is the coupled system of the
quark propagator and quark-gluon vertex DSE at vanishing temperatures in the Landau gauge us-
ing as input for the gluon propagator either fits [6, 8, 9] or results from a self-consistent treatment
of the corresponding system of DSEs [10].1 The three-gluon vertex model used in [6, 7] has been
modified in order to take recent lattice results [13] into account.

Although the ghost propagator does not enter directly the DSEs for the quark propagator and
the quark-gluon vertex one has to note that the infrared suppression of the gluon propagator is a
direct consequence of the the infrared enhancement of the ghost propagator (see e.g., ref. [14]). The
resulting positivity violation for transverse gluons identifies the role of the transverse gluons in a
non-perturbative BRST quartet mechanism [15] and thus a partial aspect of gluon confinement: In
Landau gauge QCD transverse gluons are confined and therefore not confining. Consequently, due
to the infrared suppression of the gluon propagator the quark-gluon vertex has to acquire a certain
strength in the infrared to provide DχSB or maybe even the infrared divergence indicating quark
confinement. Within the truncation of ref. [6] (and at vanishing temperatures and densities) DχSB
and quark confinement occur either together in a self-consistent way or are both absent.

An improved truncation of the quark-gluon vertex DSE might give deeper insights into the

1These fits correspond to a so-called scaling solution, one of two solution types of Landau gauge Green functions
when classified by their infrared properties, see e.g., ref. [11] and references therein. However, we want to stress the
evidence that the differences of these types of solutions in the far infrared are irrelevant for phenomenological results.
Furthermore, using numerical input obtained from a self-consistent solution of the corresponding Yang-Mills system
leaves additional freedom in taking novel findings from other investigations, see e.g., ref. [12], into account.
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possible relation between quark confinement and DχSB. In addition, isolating important tensor
structures of the quark-gluon vertex will provide a guidance when modeling this object in phe-
nomenological applications. In particular, corresponding investigations at non-vanishing tempera-
tures and/or quark chemical potentials involving the quark-gluon vertex can benefit from a better
understanding of the vertex structure, see e.g., ref. [16].

2. The coupled system of equations

The coupled system of equations for the quark propagator and the quark-gluon vertex is de-
picted in Fig. 1 and serves as a starting point for this investigation. The equation for the quark-

= −−1−1

= − 1
2Nc

+Nc
2

Figure 1: The quark propagator and the quark-gluon vertex DSE. All internal propagators are dressed. The
vertex equation has been derived from a 3PI effective action [17]. The color prefactors of the Abelian- and
the non-Abelian diagram are shown explicitely.

gluon vertex has been derived from a 3PI effective action and corresponds to the DSE truncated
at three-point level [6, 17]. Note that all vertices are dressed due to the nPI-based approach. The
last two diagrams on the right-hand side of the vertex equation are referred to as the Abelian and
the non-Abelian diagram. The color traces yield a prefactor of Nc/2 for the non-Abelian diagram,
whereas the Abelian diagram is suppressed by a factor of −1/2Nc. This natural N2

c difference be-
tween the two diagrams has been found to be even more severe due to the dynamics of the system
[6].2 Indeed, the simplest possible self-consistent treatment of the system reveals a suppression of
the Abelian diagram by two orders of magnitude compared to the non-Abelian diagram. In this
scenario the quark-gluon vertex DSE has been treated within a leading order skeleton expansion,
i.e. all dressed vertices on the right-hand side of the vertex equation are substituted by their bare
counterparts. We note however that in this setting the resulting feed-back on the propagator, i.e.
the effective quark-gluon interaction strength, is not strong enough to trigger DχSB. This result
on the one hand confirms previous DSE studies [18, 6] and on the other hand makes the necessity

2Furthermore, one can argue that the two dressed quark propagators in the Abelian diagram act as an additional
damping factor not only for very heavy quarks but also in the chiral limit via DχSB. Of course, only a detailed investiga-
tion of the Abelian diagram in upcoming studies will reveal whether this naive argument also holds in a self-consistent
treatment of the system.
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obvious to treat the quark-gluon vertex DSE in a self-consistent manner including at least the most
important tensor structures relevant for DχSB in order to generate mass dynamically.

Thus, the road map towards a self-consistent solution of the system depicted in Fig. 1 contains
the following points. In a previous first step only parts of the non-Abelian diagram have been taken
into account [7], whereas in these proceedings now the full non-Abelian diagram has been included
into the calculations. A detailed investigation of the Abelian diagram within a self-consistent treat-
ment will be performed in an upcoming study.

2.1 Towards a self-consistent solution

Since previous investigations of the system indicate a possible dominance of the non-Abelian
diagram, the following simplified system depicted in Figs. 2 and 3 has been considered as a first
step towards the full solution of the more complicated system given in Fig. 1. Using an even

= −−1−1

Figure 2: The quark propagator DSE coupled to a full quark-gluon vertex DSE denoted by the blue blob.
The gluon propagator has been taken as input from external DSE calculations [6, 8, 10].

= +

Figure 3: The truncated quark-gluon vertex DSE including the full non-Abelian diagram. For the three-
gluon vertex model a modified version compared to the one used in [6, 7] has been employed.

simpler approximation, a similar system has been treated previously [7]. But in addition to [7]
now the full non-Abelian diagram has been included. In Fig. 3, the complete tensor structure is
coupled back to the full vertex, where this object also enters the quark propagator equation in Fig.
2. We employ twelve tensor structures to span the vertex, where it turned out to be numerically
advantageous to use a simple basis given by

Γ
µ(p,q) ∝


1

/p

/q
1
2 [/p,/q]

⊗


γµ

pµ

qµ


instead of the widely-used Ball-Chiu basis [19].3 Here, p and q are the in- and outgoing quark
momenta. As input from the Yang-Mills sector a gluon propagator has been employed which is

3A more efficient way to arrange the basis elements can be found in [20]. This choice of basis setting will be
employed in upcoming studies. We thank Richard Williams and Gernot Eichmann for discussions and useful hints.
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quenched and of scaling type [6, 8, 10].4 Here we note that instead of using fits [6] for the gluon
propagator, it is convenient to include this object also from a direct calculation [10] since this step
leaves the possibility to take more recent findings for the Yang-Mills system into account, see e.g.,
[12, 13, 21, 22] and references therein.

For the three-gluon vertex in Fig. 3 a similar approach as in [12] has been employed. It is
given by the tree-level tensor structure of this object combined with the following bose-symmetric
ansatz

Γ
3g(x) =−

(
x

d1 + x

)−3κ( d1

d1 + x

)4

+d2 log
[

x
2
+1
]17/44

(2.1)

where x = p2
1 + p2

2 + p2
3 is the sum over the squared momenta entering the vertex and κ ≈ 0.595.

This ansatz inherits the strong infrared enhancement known from Yang-Mills theory (see however
the footnote in Sec.1) as well as ensures the correct anomalous dimension of the vertex in the
UV region. The novel improvement compared to [6, 7] is the zero crossing for small momenta
such that Γ3g becomes negative for small momenta. This behavior is strongly indicated by recent
lattice calculations performed in two, three and four space-time dimensions, see [12] for a detailed
discussion. In two space-time dimensions, the results show a zero crossing such that the three-gluon
vertex becomes negative [23] and are furthermore in agreement with the expected scaling behavior
[24], whereas in three and four dimensions no scaling solution has been found on the lattice so
far. Thus, the three-gluon vertex might approach a negative but finite value in the infrared regime
in these cases as pointed out in [12]. Unfortunately in four space-time dimensions the statistics
is not yet high enough to draw definite conclusions about the deep infrared region and therefore
future lattice calculations are needed to clarify this issue. Nevertheless, the vertex is suppressed
towards small momenta and shows qualitative agreement with the three-dimensional case where
this suppression is even more pronounced and a clear sign flip has been observed [13].5 Therefore
we included this property also in our model for the three-gluon vertex. In addition, we show in Sec.
3 that no stable solution could have been obtained without performing this step. Additionally, the
model inherits two residual parameters d1 and d2 which have to be fixed to physical observables,
e.g. the chiral condensate.

2.2 Obtaining the vertex dressing functions

Here, we follow the procedure as proposed in [7]. As a first step, a disentanglement of the
dressing functions is necessary in order to get them in an explicit form. Since the employed basis
is neither orthonormal nor orthogonal a linear system of equations for the vertex dressing func-
tions has to be solved which can be calculated in advance yielding explicit expressions for the
dressing functions as linear combinations of the twelve right-hand side projections. The algebraic

4It can be shown that unquenching effects play a minor role at vanishing temperatures [9]. Nevertheless, studying
the back-reaction of quarks on the Yang-Mills sector by replacing the usual Ball-Chiu- or Curtis-Pennington vertex
constructions with a full self-consistent quark-gluon vertex would be an interesting task. In particular when going to
finite chemical potential and temperature in future calculations this step will become mandatory. Furthermore, we want
to stress again that a gluon propagator of decoupling type could be employed here as well since the deep infrared behavior
of the Yang-Mills system should not affect the phenomenological results.

5Furthermore, due to the qualitative similarity of the propagators in three and four space-time dimensions there is
evidence that the zero crossing might also occur in four space-time dimensions as pointed out in [12].
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manipulations have been performed with the program FORM [25]. During each iteration step these
projections are calculated numerically, and subsequently, are plugged into the solution of the pre-
calculated linear system in order to obtain the vertex dressing functions.

2.3 Renormalization and numerical treatment

The renormalization procedure is performed analogous to [7], except that the renormalization
constant Z1F in front of the non-Abelian diagram is now absent due to the 3PI structure of the vertex
equation. The mass renormalization constant Zm, the quark wave function renormalization constant
Z2 as well as the quark-gluon vertex renormalization constant Z1F in front of the bare vertex have
been fixed within a momentum subtraction (MOM) scheme. In particular, the renormalization
constants are fixed by the conditions A(µ2) = λ1(µ

2,µ2,2µ2) = 1, where µ2 denotes some large
renormalization scale. Note that only λ1, corresponding to the tree-level part γν , has to be treated
in the renormalization process since all other tensor structures lead to UV finite integrals due to
the power-like suppression of the corresponding contributions at large momenta. Furthermore, the
condition B(µ2) = mR fixes the constant Zm, where mR is the mass at the renormalization scale.

The evaluation of the coupled system depicted in Fig. 2 and Fig. 3 is numerically ex-
pensive. Thus, the actual calculations are performed on Graphics Processing Units (GPUs) us-
ing CUDATMand openMPI. In fact, the parallelization of the problem is straightforward since
a decomposition into independent smaller fractions is possible. Each vertex dressing function
λi=1...12(p2,q2, p · q) depends on three variables. Therefore, we employ a coarse grained paral-
lelization using openMPI corresponding to the external momentum p2 in the quark propagator. On
each GPU a fine grained parallelization using CUDATMhas been employed which performs the
subsequent integrals for all twelve dressing functions and the particular value of p2. After this step
the synchronization and the evaluation of the linear system for the dressing functions takes place.
The advantage of this procedure is the minimized communication between the individual processes
and the scaling to an, in principle, arbitrary number of GPUs.6

3. Results

The system described in Sec. 2.1 has been solved self-consistently, taking all twelve tensor
structures for the quark-gluon vertex into account. Due to stability issues it was in our previous
study [7] not possible to take the complete non-Abelian diagram as well as the full infrared strength
of the three-gluon vertex (p2)−3κ into account as can be seen in Fig. 4(a) which shows the behavior
of the mass function M(p2) as obtained from the quark propagator dressing functions in the chiral
limit. Here, the corresponding infrared exponent of the three-gluon vertex has been varied from
0 to −2κ resulting in moderate changes of the dynamically generated mass (dashed lines). The
solid line shows the dynamically generated mass as obtained from the full treatment of the system
described in Sec. 2.1. Fig. 4(b) shows the dimensionless vertex dressing functions λ1, λ2 and λ3

which correspond to the tensor structures γν , pν and −qν evaluated at the symmetric point p2 = q2

and p.q = 0. We note that we observe the significant infrared enhancement also for the other

6In fact, the number of GPUs is limited only by the size of the external momentum grid, which ranges from 32 to
64 Gauss-Legendre nodes in our calculations.
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Figure 4: Left: The solid line shows the mass function M(p2) = B(p2)/A(p2) as obtained from the coupled
system presented in Sec. 2.1. The dashed lines correspond to a previous treatment of the system [7] including
only a partially dressed non-Abelian diagram. Here, the infrared exponent of the employed three-gluon
vertex model [6, 7] has been varied, where no stable solutions could have been obtained for values larger
than −2κ . Right: The dimensionless vertex dressing functions λ1, λ2 and λ3 corresponding to the tensor
structures γν , pν and −qν of the quark-gluon vertex evaluated at p2 = q2 and p.q = 0.

vertex tensor structures, independent whether they are invarariant under chiral transformations or
are non-invariant and thus (in the chiral limit) generated dynamically via DχSB. Furthermore, the
decoupling type of solution seen in the calculations might be attributed to a different initialization
strategy of the vertex dressing functions as compared to the one in ref. [6].

4. Conclusions and outlook

The coupled system of quark propagator and quark-gluon vertex has been investigated in Lan-
dau gauge using a Dyson-Schwinger approach. Results for the quark propagator coupled the quark-
gluon vertex DSE including the full non-Abelian diagram have been presented. An enhancement
in the infrared regime has been observed in most of the quark-gluon vertex dressing functions lead-
ing to an effective quark-gluon interaction strength strong enough to generate mass dynamically.
The isolation of relevant tensor structures seems feasible and will be investigated in an upcoming
study of the system, where additionally the influence of the Abelian diagram within a dynamical
setup will be investigated, thus aiming towards a complete solution of the system as depicted in
Fig. 1. Isolating important tensor structures and thus a reduction of complexity is also mandatory
in studies involving the quark-gluon vertex, especially those at non-vanishing temperatures and/or
quark chemical potentials.
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