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1. Introduction

The low-energy behavior of QCD, the spontaneous breaking of chiralsymmetry, including
the explicit breaking by the quark masses, is described by chiral perturbation theory (χPT). In the
lattice regularization of QCD lattice artifacts can contribute to the breaking of chiral symmetry,
for Wilson fermions, or its partial breaking, in the case of staggered fermions. These effects can
be included in theχPT approach, leading to new, lattice discretization dependent low-energycon-
stants. We consider Wilson fermions in this contribution, for which the effective theory, Wilson
χPT (WχPT) was introduced and worked out in [1]. The new terms in the chiral Lagrangian affect
the low-lying spectrum of the (Hermitian) Wilson-Dirac operator [2]. For a recent review with
additional references, see Ref. [3]. Here, we test and verify the predictions for the distribution of
the low-lying eigenvalues with lattice QCD simulations [4, 5] and show [6] that they can be used to
obtain the new low-energy constants introduced in WχPT. We also demonstrate the effect of clover
improving the Wilson-Dirac operator.

2. The WχPT and Wilson RMT framework

We will be concerned with theε-regime of WχPT where the zero momentum modes dominate
– the system size is such thatmπL ≪ 1. In addition we adopt the power counting withm∼ a2.
Hence, dropping the kinetic part of the chiral Lagrangian, we consider

L =−
1
2

mΣTr
(

U +U†)−
1
2

zΣTr
(

U −U†)+a2
V . (2.1)

The second term, representing āψγ5ψ term, is introduced for later convenience.V describes the
lattice artifacts [1]

V =W8Tr
(

U2+U†2)+W6
[

Tr
(

U +U†)]2+W7
[

Tr
(

U −U†)]2 . (2.2)

At largeNc, the two-trace terms are suppressed.
The finite size scaling considered is such that

m̂= mΣV , ẑ= zΣV and â2
j = a2WjV for j = 6,7,8

are held fixed. HereΣ is the condensate andV the volume.
This leading order in WχPT can equivalently be described by a chiral random matrix theory

(RMT). For Wilson fermions, including the one-trace term with low-energy constantW8, the Dirac
operator is represented in Wilson RMT (WRMT) as [2]

DW =

(

ãA iW
iW† ãB

)

, (2.3)

with W a random(n+ ν)× n complex matrix, andA andB random Hermitian matrices of size
(n+ν)× (n+ν) andn×n, respectively. As usual in the RMT context, we consider a fixed index
ν . We use a chiral basis withγ5 = diag(1, . . . ,1,−1, . . . ,−1). A andB represent the chiral symmetry
breaking term corresponding to the Wilson term in the Wilson-Dirac operator.
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Ens βIw r0/a a [fm] size L [fm] |Q|= 0, 1, 2 cfgs

A 2.635 5.37 0.093 164 1.5 1279, 2257, 1530
B 2.635 5.37 0.093 204 1.9 401, 682, 644
C 2.79 6.70 0.075 204 1.5 1207, 2130, 1448

Table 1: The ensembles used. The scale is set byr0 = 0.5 fm. Ther0/a values come from interpolation
formulae in [10].Q is the topological charge (see text).

The two-trace terms can be incorporated in WRMT via two Gaussian integrations

Zν(m̂, ẑ; â6, â7, â8) =
1

16πâ6â7

∫ ∞

−∞
dy6dy7e

−
y2
6

16â2
6
−

y2
7

16â2
7 Zν(m̂−y6, ẑ−y7;0,0, â8) . (2.4)

Here,

Zν(m̂, ẑ;0,0, â8) =
∫

dU detνUe−VL (W6=W7=0) (2.5)

is the fixed-index partition function with the one-traceO(a2) term included.

3. Index of the Wilson-Dirac operator

As indicated above, RMT predictions apply to gauge field sectors with a fixedindex, or, in the
continuum, fixed topological charge. For the Wilson-Dirac operator, the index can be defined by

ν ≡ ∑
k

′
sign(〈k|γ5|k〉) (3.1)

with |k〉 thek’th eigenstate of the Wilson-Dirac operator,DW. Only eigenvectors with real eigenval-
ues contribute, and the′ indicates that only the real eigenvalues in the branch near zero, with eigen-
values< rcut, are kept. Introducing the Hermitian Wilson-Dirac operatorD5(m0) = γ5(DW +m0)

and using

D5(m0)|ψ〉= 0 ⇒ DW|ψ〉=−m0|ψ〉 (3.2)

the index can equivalently be obtained from the zero crossings of the spectral flow of D5(m0) up
to mcut = −rcut [7]. It corresponds to the index of an overlap operator [8] with kernel D5(mcut).
Because of the dependence on the choice ofrcut, the index of the Wilson-Dirac operator is not
unique.

4. The numerical simulations

For our numerical tests, in the quenched case, we generated three ensembles using the Iwasaki
gauge action [9], which suppresses dislocations and gives a fairly unique indexν or topological
chargeQ. The ensembles are characterized in Table 1.

The topological charge listed in Table 1 was obtained after six steps of HYP smearing [11] with
an improved latticeFF̃ operator [12]. On the configurations with|Q| ≤ 1, as well as the|Q| = 2
configurations of ensemble A, we also did the much more expensive computation of the index
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Figure 1: Distribution of the real eigenvalues of the Wilson-Dirac operator for theν = 1 configurations of
the twoL = 1.5 fm ensembles A and C (left) and comparison of the distribution with and without clover
improvement ata= 0.093 fm (ensemble A, right).

from the spectral flow. We first applied one HYP smearing before constructing the Wilson-Dirac
operator. The topological charge and the index agreed on most configurations, with the agreement
improving at smaller lattice spacing and becoming worse for the larger volume ensemble C, for
which it was about 97%.

The crossing points in the spectral flow are the real eigenvalues, whosedistribution is shown
in Fig. 1 (left). The dashed vertical lines are estimates of (minus) the critical mass. Some real
eigenvalues are smaller, on so-called “exceptional” configurations.

For ensemble A, we also computed the spectral flow with clover improving the Wilson-Dirac
operator, again after one HYP smearing. The clover coefficient was set to 1, which is expected to
be close to the nonperturbative value after the HYP smearing [13]. The resulting distribution of the
real eigenvalues is compared to the unimproved case in Fig. 1 (right). The improvement is quite
dramatic, besides the expected reduced shift away from zero, the distribution is much narrower
and more symmetric. The width is determined by theO(a2) terms in Eq. (2.2), so with clover
improvement the coefficients are much smaller.

5. Wilson eigenvalue distributions and WRMT

We next computed the lowest 20, in magnitude, eigenvalues of the Hermitian Wilson-Dirac
operatorD5(m0) with bare massam0 =−0.216 for ensembles A and B to compare to eigenvalues
distributions obtained from WRMT [2].

Without clover improvement, we considered only contributions from the two-trace term in
Eq. (2.2) [4]. We used theν = 0 histogrammed eigenvalue distributions of ensemble A to determine
the WRMT parameters ˆm and â = â8 and the eigenvalue rescaling factorΣV. Using the same
parameters we then get a prediction for theν = 1 distribution that can be compared to the numerical
data (see Fig. 2 top).

Ensemble B differs from ensemble A only in the volume. Using volume scaling, ˆmB =

m̂A(VB/VA) andâB = âA
√

VB/VA, we obtain predictions for the distributions for ensemble B (see
Fig. 2 bottom). As can be seen, the WRMT predictions work well.
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Figure 2: Comparison of the histogrammed eigenvalue distributions with WRMT. Theν = 0 distribution
of ensemble A (top left) was used to obtain the parameters. The predictions for ensemble B (bottom) used
volume scaling of the parameters.

For ensemble C, at the smaller lattice spacing, we computed the eigenvalues with two different
bare massesam0 = −0.178 and−0.184. We used the histogrammedν = 0 distribution with bare
massam0 = −0.184 to the determine the WRMT parameters, and used “mass scaling”,∆m̂=

∆m0ΣV for predictions for the distributions with the other bare massam0 = −0.178, as shown in
Fig. 3. Again, the WRMT predictions work well.

6. Clover improved eigenvalue distributions and WRMT

We have already seen from the distribution of the real eigenvalues in Fig. 1(right) that clover
improvement not only, as expected, decreases the additive mass renormalization (the real eigen-
value peak is much closer to zero) but also the size of theO(a2) low-energy constants considerably
(the distribution becomes much narrower). Here we consider the effects on the distribution of the
20 lowest, in magnitude, eigenvalues of the Hermitian Wilson-Dirac operatorD5(m0) with clover
improvement for ensemble A using a bare massam0 = −0.03. The comparison with WRMT is
shown in the first three panels of Fig. 4.

For |â j | ≪ 1 the lattice effects affect, to leading order, only the index peak of the topological
modes. These are the lowest eigenvalues with almost chiral eigenvectors which correspond to the
real eigenvalues shifted by the bare mass. As can be seen in Fig. 4 (bottomright) the distributions
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Figure 3: Comparison of the histogrammed eigenvalue distributions with WRMT for ensemble C. Theν = 0
distribution with bare massam0 =−0.184 (top left) was used to obtain the parameters. The predictions for
bare massam0 =−0.178 (bottom) used “mass scaling”,∆m̂= ∆m0ΣV.

match almost perfectly. The eigenvalue density, for|ν |> 0, on the opposite side of the index peak
is almost continuum like and allows determination of ˆm andΣV. We use the|ν | = 1 eigenvalue
distribution for this. The ˆa j are then obtained from their effect on the index peak. We use the fact
that the low-energy constant have fixed signsW6 < 0, W7 < 0 andW8 > 0 [2, 14, 15] and that the
distribution depends only on the combination|W6|+ |W7| [2] allowing to takeW7 = 0. We find that
with eitherâ8 6= 0 or â6 6= 0 we can reproduce the histogrammed|ν |= 0 and|ν |= 1 distributions
in Fig. 4 (top) equally well. But only with ˆa6 6= 0 can we reproduce the|ν |= 2 distribution, too, as
shown in Fig. 4 (bottom left).

We can explain the drastically different effect ofW6 andW8 on the analytic prediction for
|ν | = 2 by noting that theW6-term, in WRMT, corresponds to a Gaussian fluctuating mass, see
Eq. (2.4). Theδ -function index peak of the continuum theory is therefore smeared into a Gaussian
peak with an amplitude that increases with|ν |. W6, therefore, does not introduce a repulsion
between eigenvalues. On the contrary, theW8-term of WχPT is included in the representation of
the Dirac operator, Eq. (2.3), of WRMT, and hence induces an eigenvalue repulsion, as can be seen
from the red curve in Fig. 4 (bottom left). This repulsion is seen for all sectors with |ν | > 1 [2].
It is thus useful to include eigenvalues from configurations with|ν |> 1 for a determination of the
low-energy constants from fits to eigenvalue distributions.

We finally note that, with clover improvement the nonvanishing|â6| is about a factor 3-4
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Figure 4: Comparison of the histogrammed clover-improved eigenvalue distributions with WRMT for en-
semble A (top and bottom left). Theν = 1 distribution (top right) was used to obtain the WRMT parameters.
The red curves are the WRMT predictions with ˆa8 6= 0, the blue curves those with ˆa6 6= 0. The bottom right
plot shows a comparison of the distribution of the real eigenvalues with the first two positive eigenvalues of
D5(m0) shifted by the bare mass for theν = 2 configurations.

smaller than the nonvanishing|â8| without the improvement, both after one HYP smearing, illus-
trating again the quite dramatic effect of clover improvement on theO(a2) low-energy constants.

7. Conclusion

We have presented numerical simulations, in the quenched case, of the low-lying eigenvalues
of the Hermitian Wilson-Dirac operator, both with and without clover improvement to compare to
predictions fromε-regime WilsonχPT or, equivalently, Wilson RMT. We used the Iwasaki gauge
action which suppresses dislocations and leads to a fairly unique index or topological charge. This
is helpful, since the analytical predictions are made for sectors of fixed index. We found that our
eigenvalue distributions agree well with the analytical predictions, and verified scaling with volume
and (bare) mass.

We have also looked at the distribution of the real eigenvalues of the Wilson-Dirac operator,
obtained from the spectral flow. We found a dramatic decrease of both theadditive mass renormal-
ization (the real eigenvalue peak is closer to zero) and theO(a2) low-energy constants (the width
of the distribution becomes narrower and more symmetric) with the clover improvement.
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Fits to the distribution of the low-lying eigenvalues of the Hermitian Wilson-Dirac operator al-
low determination of the low-energy constants of QCD including those that parameterize theO(a2)

lattice effects. However, distributions on configurations with|ν |> 1 are needed to disentangle the
effects ofW8 from those ofW6 andW7 when all|â j | are small.
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