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Dilaton vs Higgs: Nearly Conformal theory with confinement-like pattern Gennady Kozlov

1. Introduction.

It is known that the electroweak symmetry breaking (EWSB) at the scale v ≃ 246 GeV can
be triggered by spontaneous breaking of scale symmetry at an energy f ≥ v [1,2]. In this scenario,
there is a nearly conformal dynamics at a scale ∼ 4π f below which the scale symmetry is broken
and one feeds into an electroweak (EW) sector. In the spectrum there is an EW singlet scalar
field χ(x), the dilaton mode, that is the pseudo-Goldstone boson associated with the spontaneous
breaking of conformal symmetry. The real dilaton field σ(x) is parametrized by σ(x) = χ(x)− f
with the order parameter ⟨χ(x)⟩ = f . The Higgs-boson can be seen as a dilaton in the limit case
f = v. The mass of the σ -dilaton is naturally light, m2

σ = ε · f 2, where the small parameter ε controls
the deviations from exact scale invariance. The dilaton becomes massless when the conformal
invariance is recovered.

Since of its pseudo-Goldstone nature, the dilaton could be the messenger field between the
Standard Model (SM) fields and the hidden sector. For example, the dilaton field itself can be
lighter than, e.g., the dark matter (DM) particles, and be the dominant product of DM annihilation.
Note that if one assumes that both SM and DM are fully embedded in the conformal sector, one
can propose that the dilaton is the dominant messenger between the DM, the SM and the unparticle
stuff. The latter itself with the scaling dimension d may appear as a non-integer number d of
invisible particles [3].

We assume that the dilaton could be the dominant origin of the unparticle production through
the SM fields. For this, the model in which the decay of a dilaton into a vector unparticle U
and a single photon, σ → γ U , is studied. In EW sector the latter decay process transforms into
σ → γγ . Signals of the unparticle stuff can be detected through the missing energy and momentum
distribution carried away by the unparticle. The coupling of a dilaton to the unparticle stuff is
through the loop composed with the quark fields flowing in the loop. The attractive feature of
the decay σ → γ U is that the photon energy has a continuous spectrum in the rest frame of σ , in
contrast to, e.g., σ → γγ or σ → γ Z. The mode σ → γ U would predict a useful tool for study
of new physics at nearly conformal sector in respective broad range of the dilaton mass up to the
order O(1 TeV ), and the distiguishing the dilaton from the SM Higgs-boson H, restricted by its
mass with ∼ 125-126 GeV in the decays like H → γγ , H → γ Z, H → γ U , etc.

2. Couplings.

The production of the dilaton can be through the gluon-gluon fusion, gg → σ . Since the
couplings σgg are crucial for collider phenomenology, it has been shown [2] that these couplings
can be significantly enhanced under very mild assumption about high scale physics. At energies
below the scale 4π f the effective dilaton couplings to massless gauge bosons are provided by
the SM quarks lighter than the dilaton: [cEM(Fµν)

2 + cs(Ga
µν)

2]σ/(8π f ). Here, Fµν and Ga
µν

are the electromagnetic (EM) and gluon fields strength tensors, respectively; cEM = −α · 17/9 if
mW < mσ < mt , cEM = −α · 11/3 if mσ > mt ; cs = αs · (11− 2nlight/3); nlight is the number of
quarks lighter than the dilaton; α and αs are EM and strong coupling constants, respectively; mW

and mt are masses of the W -boson and the top-quark, respectively. The second term in the effec-
tive coupling above mentioned indicates a (33/2− nlight)-factor increase of the coupling strength
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compared to that of the SM Higgs boson. The upper limit of f is estimated in [4]: f < 5.33 TeV if
the dilaton is lighter than the top quark, or f < 4.87 TeV otherwise.

3. Model.

The model is formulated in terms of a Lagrangian which features: the dilaton field σ(x) as the
local operator and from which the vector potential Aµ(x) is derived, the conformal field given by the
operator Oµ

U and a set of the SM fields. The conformal invariance can be broken by the couplings
with non-zero mass dimension effects. The Lagrangian density (LD) with a small explicit breaking
of the conformal symmetry is L = L1 +L2, where

L1 =−B∂µAµ +
1

2ξ
B2− 1

Λd−3
U

(Aµ −∂µσ)Oµ
U + ψ̄(i∂̂ −m+gÂ)ψ − σ

f ∑
ψ

(
m+ εyψv

)
ψ̄ψ , (3.1)

L2 =
1

Λd−1
U

[
∑
q

ψ̄(cv γµ −av γµγ5)ψ OUµ +
1

Λ2
U

W a
µαW aµ

β

(
∂ αOβ

U +∂ β Oα
U

)]
. (3.2)

The field B plays the role of the gauge-fixing Lagrangian multiplier, and it remains free. We assume
ξ ̸= ∞ in (3.1) since otherwise the model becomes trivial. The unparticle vector operator Oµ

U de-
scribes a scale-invariant hidden sector that possesses IR fixed point at a high scale ΛU , presumably
above the EW scale; cv and av are vector and axial-vector couplings.

A dilaton acquires a mass and its couplings to quarks can undergo variations from the standard
form. In particular, since scale symmetry is violated by operators involving quarks, shifts in the
dilaton Yukawa couplings to quarks can appear. This is given in (3.1) by ε which parametrizes the
size of the deviation from exact scale invariance [5]. In LD (3.1) the nine additional contributions
to Yukawa couplings yψ are taken into account (yψ are 3×3 diagonal matrices in the flavor space);
ψ(x) stands for the spinor field with the mass m.

In the model considered here, the only SM quarks contribution is dominated, because the W -
boson loop contribution is suppressed by two more powers of ΛU in (3.2), and due to significantly
large value of ΛU one can ignore it.

The equations of motion are (∇ ≡ ∂/∂xµ )

∂µσ ≃ Aµ −
1

Λ2
U

ψ̄(cv γµ −av γµγ5)ψ, ∂µ Aµ = ξ−1 B,

∂µB =−Jµ +
1

Λd−3
U

OUµ , Jµ = g ψ̄ γµ ψ,

1
Λd−3

U
∂µOµ

U +
1
f
(m+ ε yψ v)ψ̄ ψ = 0,

[
i ∂̂ −m

(
1+

σ
f

)
+gÂ− σ

f
ε yψ v+

1
Λd−1

U
Oµ

U(cv γµ −av γµγ5)

]
ψ = 0.
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In the nearly conformal sector (NCS) supported by the weakly changing operator Oµ
U in the

space-time and the conservation of the current Jµ , the σ(x)-field looks like the dipole field obeying
the equation of the 4th order

lim
mσ→0

(
∇2 +m2

σ
)2 σ(x)≃ 0 (3.3)

and the canonical commutation relation (see, e.g., the book [6])

[σ(x),σ(y)] =
1
ξ

∫ d4 p
(2π)3 sgn(p0)δ ′(p2)e−i p(x−y) =

1
8π iξ

sgn(z0)θ(z2),z = x− y,

where sgn(p0)δ ′(p2) is well-defined as the odd homogeneous generalized function from the space
S′(ℜ4) of the temperate distributions on ℜ4.

4. Propagator.

To find the propagator of the σ(x)-field in NCS we use the two-point Wightman function
(TPWF) in the form [7] W (z) = ⟨Ω,σ(x)σ(y)Ω⟩=−iξ−1 E−(z), where E−(x) is the only distri-
bution among the solutions of the equation

(
∇2
)2W (x) = 0 obeying locality, Poincare covariance

and the spectral conditions, however not positive definiteness of the metric. The vacuum Ω-vector
satisfies the following conditions: σ−(x)|Ω⟩ = 0, ⟨Ω,Ω⟩ = 1, where [σ−(x)]∗ = σ+(x) in the de-
composition σ(x) = σ−(x)+σ+(x). The solutions of Eq. (3.3) can be classified by their TPWF’s.
One has

E−(x) =
∫ d4 p

(2π)3 θ(p0)δ ′(p2)e−i px =
−1

(4π)2 ln(−µ2 x2 + iε x0) (4.1)

which is the negative-frequency part of the generalized function (distribution) in E(x) = E+(x)+
E−(x) = (8π)−1 θ(x2)sgn(x0); µ is the positive constant required for dimensioneless reasons. To
separate the IR parameter µ-dependence, the TPWF (4.1) can also be given in the form
(−4π)−2

{
ln |µ2 x2|+ iπ sgn(x0)θ(x2)

}
.

The Fourier transform of E−(x) is Ẽ−(p) = 2π θ(p0)δ (1)(p2, µ̃2), where µ̃ = 2e−γ+1/2 µ ,
γ = −Γ′(1) being the Euler’s constant. The functional δ (1)(p2, µ̃2) is defined on the space S(ℜ4)

of the complex Schwartz test functions on ℜ4 as [8]

δ (1)(p2, µ̃2) =
1

16

(
∂ 2

∂ p2

)2[
θ(p2) ln

p2

µ̃2

]
.

The presence of the parameter µ in E−(x) (4.1) breaks its covariance under dilatation transforma-
tions xµ → λ xµ (λ > 0) and implies spontaneously symmetry breaking of the dilatation invariance
of (3.3). This is one of the reasons for the special role of the dipole field σ(x) in what follows.

The Green’s function in ℜ4 space-time is given by G(z) = ⟨Ω,T [σ(x)σ(y)]Ω⟩=−iξ−1 Ec(z),
where the causal function

Ec(x) = θ(x0)E−(x)+θ(−x0)E+(x) =
1

i(4π)2 ln(−µ2 x2 + iε)

satisfies the following equations

∇2Ec(x) =
i

4π2
1

−x2
µ + iε

, (∇2)2Ec(x) = δ 4(x).
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In ℜ4-momentum space the propagator is given in terms of distributions

G̃(p) =
−1

(4π)2 ξ

∫
d4xei px ln(−µ2 x2 + iε).

One can calculate G̃(p) through G̃(p) = (∂ 2/∂ p2)H(p), where [7]

H(p) =
−1

(4π)2 ξ

∫
d4xei px ln(−µ2 x2 + iε)

−x2
µ + iε

.

Finally, the result is

H(p) =
i

4ξ
ln
[
e2γ(−p2 − iε)/(4 µ2)

]
p2 + iε

,

which leads to

G̃(p) =
1

2 iξ
∂

∂ pµ

{
pµ [ln(−p2/µ̃2 − iε

)]
(p2 + iε)2

}
. (4.2)

The following equation is straightforward: (−p2)2 iξ G̃(p2) = 1. The differentiation over pµ in
(4.2) with ∂/∂ pµ being the weak derivative has to be understood in the sense of distribution where
for any test function u(p) we have∫

G̃(p)u(p)d4 p =
i

2ξ

∫
d4 p

ln(−p2/µ̃2 − iε)
(p2 + iε)2 pµ ∂

∂ pµ u(p)

and the extra power of momentum pµ explicitly eliminates IR divergence.
The lowest order (potential) energy of a static "charge" is given by the Fourier transform

(|⃗x| ≡ r)

ε(r)∼
∫ d3 p⃗

(2π)3 ei p⃗⃗x D(p0 = 0, p⃗;M)

with D(p,M) = M2 G̃(p), M has the dimension one in mass units. Using the propagator G̃(p) in
the form

G̃(p) =
1

4ξ i
∂ 2

∂ p2

{
ln
[
e2γ (−p2/µ̃2 − iε)

]
−p2 − iε

}
which is equivalent to (4.2), one can find

ε(r)∼ M2

8π ξ
r [a+b ln(rµ̃)] ,

where a and b are the constants. Thus, the energy of a dilaton in NCS is linearly rising as r. The
result is stable both at short and large distances in any finite order of perturbation theory.

The dominant effective potential for heavy quark and antiquark bound states at small distances
is (see for details [9])

Ve f f (r)∼−CF

r
αs(mq)−

λ (mq,ησq)

r
exp(−mσ r)

with

λ (mq,ησq) =
m2

q

4π f 2 η2
σq,

5
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where ησq reflects the model "flavor" in the strength of the interaction between the dilaton σ and
heavy quarks q (ησq = 1 in SM, otherwise, ησq > 1), CF = 4/3 for SU(3) group. The lower bound
on heavy quark mass mq is given as

mq >
f

ησq
(4π CF αs)

1/2

which can exceed the top quark mass even if f ≃ v and ησq = 1+δ as δ < 1.

5. Decay rate.

The Lorentz invariant matrix element of the decay σ → γU is MσγU = ε⋆
µ(k,λ )ε⋆

ν(PU ,λU)Mµν
σγU ,

where εµ(k,λ ) and εν(PU ,λU) are the wave functions of the photon (with momentum k and
the polarization λ ) and the unparticle (with momentum PU and the polarization λU ); Mµν

σγU =

[Pµ
U kν − gµν (PU · k)]A+ εµναβ kα PUβ B. The amplitude A is induced by the quark loop analo-

gously as in the decays of a scalar Higgs-boson into two photons [10], or H → γZ [11], or H → γU
[12]. The other amplitude B vanishes because of the scalar nature of the dilaton.

In case the EWSB is triggered by spontaneous breaking of the scale symmetry at f ≥ v, the
decay amplitude A is

A(xq,yq) =
3α v

π mW sW Λd−1
U f ∑

q
cv eq [I(xq,yq)− J(xq,yq)] (5.1)

with xq = 4m2
q/m2

σ , yq = 4m2
q/P2

U for the quarks q with the mass mq and the electric charge eq;
sW ≡ sinθW , θW is the angle of weak interactions. The axial-vector coupling av in (3.2) does
not contribute to A(xq,yq) because of charge conjugation constraint. We deal with the following
expressions for I(xq,yq) and J(xq,yq) [12]:

I(xq,yq) =
xq yq

xq − yq

{
1
2
− J(xq,yq)+

xq

xq − yq
[g(xq)−g(yq)]

}
,

J(xq,yq) =
xq yq

2(xq − yq)
[ f (yq)− f (xq)] .

For heavy quarks (xq ≥ 1), obeying the conditions (4mq/mσ )> xq ≥ (2mq/mσ ), we use

f (xq) =

(
sin−1

√
1
xq

)2

, g(xq) =
√

xq −1 sin−1

(√
1
xq

)
and

f (yq) =

(
sin−1

√
1
yq

)2

, g(yq) =
√

yq −1 sin−1

(√
1
yq

)
,

where 1 ≤ yq < (1− εγ)
−1, εγ = 2Eγ/mσ . The energy of the photon Eγ = (m2

σ −P2
U)/(2mσ ) is

restricted in the window [0,mσ/2].
The energy distribution of the emitted photon in the decay width Γ(σ → γU) is

dΓ(σ → γU)

dEγ
=

Ad

(2π)2 mσ E3
γ
(
P2

U
)d−2 |A(xq,yq)|2,

6
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where [3]

Ad =
16π5/2

(2π)2d
Γ(d +1/2)

Γ(d −1)Γ(2d)
.

Fig. 1: Energy spectrum of the photon in decay σ → γU for various values of d.

In Fig. 1, we show the energy spectrum of the emitted photon in decay σ → γU for various
values of d with the dilaton mass mσ = 200 GeV, cv = 1, ΛU = 1 TeV, f ≃ v. The only top quarks
in the loop are included for the calculations because of the negligible contributions from lighter
quarks in the amplitude (5.1).

6. Conclusions.

Since the conformal invariance can be broken spontaneously, a dilaton could emerge in the
low-energy spectrum. We have studied the decay of a dilaton into a vector U-unparticle and a
single photon. For a certain relation between couplings in NCS the field solutions are defined
by 4th order differential equation (3.3). An analytic expression for two-scalar particle correlation
function is derived, and the heavy quark interplay due to dilaton field exchange is discussed. We
suggest the dilaton fields are condensed and then the string forms between color (heavy) charges.
This is the analog to the Abelian Higgs model.

A nontrivial scale invariant sector of dimension d may give rise to peculiar missing energy dis-
tributions in σ → γ U that can be treated in the experiment. Our results imply that these transitions
are near a border of the conformal invariance breaking. Unless the LHC can collect a very large
sample of σ , the detection of U- unparticles through σ → γ U would be quite challenging. It is
related with the results of this work which are useful for many reasons. Among them, in particular,
there are:
- the couplings of a dilaton are similar to those of the SM Higgs-boson;
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- a dilaton, if observed, could open the window to the conformal pattern of the strong sector.
This would be supported by the study of σ → γ U where the scale invariant sector is close to EW
sector, that could provide the decay σ → γ γ to be compared with LHC data in searching for new
light scalar object with the mass close to 125 GeV.
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