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1. Coulomb gauge at leading order

The first part of this talk concerns the construction of a leading order truncation to the Dyson-
Schwinger equations of Coulomb gauge QCD [1]. Let us begin byconsidering the following
(standard) functional integral

Z =

∫

DΦeıS , S = Sq +

∫

dx(E2−B2)/2, (1.1)

where the action (S ) is split into a quark component,Sq, and the Yang-Mills part.DΦ generically
denotes the integration measure. The chromomagnetic field,~B, will not concern us in the following.
The chromoelectric field,~E, is given by (superscript indicesa, . . . denote the color index in the
adjoint representation)

~Ea = −∂0~A
a−~DabAb

0, ~Dab = δ ab~∇−g facb~Ac, (1.2)

where~D is the spatial component of the covariant derivative in the adjoint color representation (the
f are the usualSU(Nc) structure constants). We work in Coulomb gauge (~∇ ·~A = 0), for which
the corresponding Faddeev-Popov (FP) operator is−~∇ · ~D. There are two important points: the
FP operator involves purely spatial operators and the chromoelectric field is linear in the temporal
component of the gauge field,A0. We now convert to the first order formalism by introducing an
auxiliary field~π via the identity

exp

{

ı
∫

dxE2/2

}

=

∫

D~π exp

{

ı
∫

dx
[

−π2/2−~πa ·~Ea
]

}

. (1.3)

The field~π is split into transverse (~∇ ·~π⊥ = 0, henceforth we drop the⊥) and longitudinal (~∇φ )
parts. Since the action is now linear inA0, we can integrate it out, to give

Z =
∫

DΦδ
(

~∇ ·~A
)

δ
(

~∇ ·~π
)

Det
[

−~∇ ·~D
]

δ
(

~∇ ·~Dφ + ρ
)

eıS ′
, ρa = g fabc~Ab ·~πc +gq

[

γ0Ta]q,

(1.4)
whereρ is the color charge (including the quark component, with quark field q and the Hermitian
color generatorTa). Theφ -field can also be integrated out to cancel the FP determinant(Coulomb
gauge is formally ghost free). However, noting the temporalzero modes of the FP operator, i.e.,
those spatially independent fields for which−~∇ ·~Dφ(x0) = 0, one is left with [2]

Z =
∫

DΦδ
(

~∇ ·~A
)

δ
(

~∇ ·~π
)

δ
(

∫

d~xρ
)

eıS ′′
, S

′′ ∼
∫

dx
[

. . .−ρaF̂abρb/2
]

. (1.5)

In the above, one sees that there are two transverse degrees of freedom for the gluon and the total
color charge is conserved and vanishing. The Coulomb kernelF̂ = [−~∇ ·~D]−1(−∇2)[−~∇ ·~D]−1 is
nonlocal in~A, so we make the leading order truncation whereby it is replaced by its expectation
value, which is related to the temporal component of the gluon propagator:F̂ →<F̂>∼W00. It is
known that in Coulomb gauge on the lattice,W00 is infrared (IR) enhanced, going likeσ/~q4 but
with a coefficientσ somewhat larger than the Wilson string tension (see e.g., Refs. [3, 4]). The
charge conservation term is rewritten in the limiting form of a Gaussian, mimicking the Coulomb
term:

δ
(

∫

d~xρ
)

∼ lim
C→∞

N exp

{

−ı/2
∫

dxdyρa
x δ ab

C δ (x0−y0)ρb
y

}

, (1.6)
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and such that we now have instantaneous four-point interaction terms includingΓAAππ andΓqqqq:

Sint ∼
∫

dxdy
[

−ρa
x δ abF̃xyρb

y/2
]

, g2CF F̃(~q) = (2π)3
C δ (~q)+8πσ/~q4 (1.7)

(CF = (N2
c −1)/2Nc). This interaction contains the charge constraint and leads directly to a linear

rising potential with a string tensionσ . To complete the leading order truncation scheme, we
restrict to one-loop terms in the following equations and disregard all but thẽF interaction terms.

2. Gluon gap equation

In the first order formalism, the transverse spatial gluon degrees of freedom (~A, ~π) have been
separated such that there are three propagatorsWAAi j, Wππ i j andWAπ i j (i, j are the spatial indices),
correspondingly with three proper functionsΓAAi j, Γππ i j andΓAπ i j related via a matrix inversion
structure (see, e.g., Ref. [5]). Since the interaction content of our truncated system is instantaneous,
the energy dependence of these functions is trivial (and themixed functions will play no role in
the discussion here). There are two scalar dressing functions of interest, both functions of spatial
momentum:ΓAA(~k2) andΓππ(~k2). The spatial gluon propagatorWAA has the form (Wππ is similar)

WAAi j(k) = ıti j (~k)
Γππ(~k2)

[k2
0−~k2ΓAA(~k2)Γππ(~k2)+ ı0+]

(2.1)

(ti j is the transverse spatial momentum projector). The truncated Dyson-Schwinger equations have
the mnemonic form (omitting kinematical factors etc.)

Γππ(~p2) ∼ 1+
∫

dkF̃(~p−~k)WAA(k), ΓAA(~p
2) ∼ 1+

∫

dkF̃(~p−~k)Wππ (k). (2.2)

The charge constraint term of the interactionF̃ (i.e., the term∼ C δ (~p−~k)) immediately tells us
that bothΓAA andΓππ are divergent asC → ∞ (there is also an IR divergence), meaning that the
gluon self-energy is infinite and the propagator poles are shifted to infinity. This has the natu-
ral interpretation that one requires infinite energy to create a (colored) gluon from the (colorless)
vacuum. If, however, we consider the static gluon propagator W(s)

AA , written as

W(s)
AAi j(

~k) =
∫

dk0

2π
WAAi j(k) = ti j (~k)

√
Gk

2|~k|
, Gk =

Γππ(~k2)

ΓAA(~k2)
(2.3)

then we can combine the Dyson-Schwinger equations to get thegluon gap equation

Gp = 1+
g2Nc

4

∫

d~kF̃(~p−~k)

(2π)3|~k|
t ji (~p)ti j (~k)

[

√

Gk−
~k2

~p2

Gp√
Gk

]

. (2.4)

This equation has previously been derived in the Coulomb gauge Hamiltonian approach [6]. The
dressing function for the static propagator,G, is IR finite and independent of the charge constraint.
Solving numerically (in units ofσ ), one sees that the solution has the formGx = x/(x+ κx) for
an IR constant ‘mass’ functionκ(x) and wherex =~k2. κx is logarithmically dependent on the
numerical ultraviolet (UV) cutoffΛ (dimensions of[mass]2), despite the fact that the interaction

3
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Figure 1: [left panel]κx as a function ofx =~k2 and [right panel]κ(x′) as a function ofx′ = x/a for various
values of the UV-cutoffΛ. All dimensionfull quantities are in appropriate units of the string tension,σ . See
text for details.

has the form 1/~q4. κ is plotted in the left panel of Fig. 1. However, defininga = κ(x = 0) and
introducing the scaled variablex′ = x/a, one finds thatκ(x′) = κ(x = x′a)− a is independent of
Λ, shown in the right panel of Fig. 1. It turns out in general that by simply writing all dimension-
full quantities in units of the (dynamically generated) gluon mass function at some point, one may
constructΛ-independent dressing functions (and subsequentlyG) without introducing a renormal-
ization constant [1].

3. Quark gap equation

Given that the interaction content arising from the Coulombterm couples to the gluon and
quark charges in the same manner, the quark sector turns out to be very similar to the gluon sector
within the leading order truncation scheme considered here. The instantaneous character of the in-
teraction leads immediately to the following form for the quark propagator in terms of two dressing

functionsA andB (both functions of~k
2
):

Wqq(k) = (−ı)
γ0k0−~γ ·~kAk +Bk

[k2
0 −~k2A2

k −B2
k + ı0+]

. (3.1)

A possible term∼ γ0k0~γ ·~k does not appear, just as in the perturbative case [7]. The static quark
propagator,W(s)

qq , can be written in terms of the mass function,M, and quasiparticle energy,ω :

W(s)
qq (~k) =

∫

dk0

2π
Wqq(~k) =

~γ ·~k−Mk

2ωk
, Mk =

Bk

Ak
, ω2

k =~k2 +M2
k . (3.2)

The Dyson-Schwinger equations for the dressing functionsA andB have the mnemonic form

Ap ∼ 1+

∫

d~kF̃(~p−~k)/ωk, Bp ∼ m+

∫

d~kF̃(~p−~k)Mk/ωk, (3.3)
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Figure 2: [left panel] Quark mass function,M(x), and [right panel] dressing,M(x)−m, plotted as functions
of x = ~p2 for a range of quark masses. All dimensionfull quantities are in appropriate units of the string
tension,σ . See text for details.

showing us via the charge constraint that the quark self-energy is divergent (like for the gluon) and
one requires infinite energy to extract a single quark from the vacuum. However, combining the
equations in terms of the mass function,M, leads to the Adler-Davis gap equation [8]

Mp = m+
1
2

g2CF

∫

d~kF̃(~p−~k)
(2π)3ωk

[

Mk−
~p·~k
~p2 Mp

]

. (3.4)

The mass function is IR finite and independent of the charge constraint. While the above equation
was originally derived for chiral quarks (in the Hamiltonian formalism), in the leading order trun-
cation scheme presented here one can show [1] that it also reproduces the Coulomb gauge heavy
quark limit (in the absence of pure Yang-Mills corrections)[9]. The mass function is plotted on the
left panel of Fig. 2. One can see that chiral symmetry is dynamically broken, although the chiral
condensate is too small [10] (this can be improved by considering the spatial quark-gluon vertex
[11]). In the right panel of Fig. 2, the dressingM(x)−m is plotted. As the quark mass increases
the dressing initially also increases, but for heavier quarks becomes smaller and in the heavy quark
limit, M → m.

4. Bethe-Salpeter equation

Within this leading order truncation scheme, it is possibleto study the quark-antiquark Bethe-
Salpeter equation for (color singlet, flavor nonsinglet) pseudoscalar and vector mesons with arbi-
trary quark masses [10]. The pseudoscalar case will be discussed here – the vector case is similar.
In the Coulomb gauge rest frame, the Bethe-Salpeter vertex for pseudoscalar meson can be written
(omitting flavor factors)

ΓPS(~p;P0) = γ5[

Γ0 +P0γ0Γ1 +~γ ·~pΓ2 +P0γ0~γ ·~pΓ3
]

, (4.1)
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whereP2
0 = M2

PS is the total energy squared (at resonance) for the quark-antiquark pair and~p the
spatial momentum flowing along the quark line. The dressing functionsΓi all have the argument
~p2. There are two basic quantities of initial interest (trace over Dirac matrices):

{

fPS

hPS

}

=
Nc

M2
PS

Trd

∫

dk
(2π)4

{

γ5P0γ0

M2
PSγ5

}

W+
qq(k

+)ΓPS(~k;P0)W
−
qq(k

−), (4.2)

wherek± represents the energy and spatial momentum argument(k0±P0/2,~k) and the two quark
propagatorsW±

qq correspond to bare quark massesm±. fPS is the pseudoscalar meson leptonic decay
constant.hPS is related tofPS via the axialvector Ward-Takahashi identity (AXWTI) [10, 12] and
this can be compared to the Gell-Mann-Oakes-Renner relation in the chiral limit

M2
PSfPS= (m+ +m−)hPS, hPS

m±→0−→ − <qq> / fPS, (4.3)

indicating thathPS is a generalization of the chiral condensate to finite, arbitrary mass quarks.
Evaluating the trace and energy integrals for the right-hand side of Eq. (4.2), one obtains spatial
integrals over a combination of terms involving IR divergent quantities such asA. However, fPS

andhPS must be IR finite. Assuming the form

fPS= 2ıNc

∫

d~k

(2π)3ω+
k ω−

k

[M+
k +M−

k ]

[ω+
k + ω−

k ]
fk, hPS= 2ıNc

∫

d~k

(2π)3ω+
k ω−

k

[ω+
k + ω−

k ]hk, (4.4)

the combinations of divergent factors are then contained within the two functionsf andh. Here
is where Coulomb gauge does something special: when one expands the truncated Bethe-Salpeter
equation

ΓPS(~p;P0) = −ıg2CF

∫

dk
(2π)4 F̃(~p−~k)γ0W+

qq(k
+)ΓPS(~k;P0)W

−
qq(k

−)γ0, (4.5)

the right-hand side takes the mnemonic formΓi ∼
∫

F̃[. . .][ fk or hk] where the terms represented by
the dots ([. . . ]) involve combinations of only the finite functionsM±

k or ω±
k . The Bethe-Salpeter

equation can thus be rewritten in terms of onlyf andh. The equal mass case is

hp =
P2

0

4ω2
p

fp +
1
2

g2CF

∫

d~kF̃(~p−~k)
(2π)3ωk

{

hk−hp
~p·~k
~p2

}

,

fp = hp +
1
2

g2CF

∫

d~kF̃(~p−~k)
(2π)3ωk







fk

[

~p·~k+MpMk

]

[

~k2 +M2
k

] − fp
~p·~k
~p2







. (4.6)

The arbitrary mass case has a similar form. The corresponding vector meson equation is also sim-
ilar, but involves four functions. One can see that the aboveform for the Bethe-Salpeter equation
thus behaves like the previously discussed gap equations for G andM, where the charge constraint
and IR divergences cancel and despite the interaction, the functions f andh are finite. The equa-
tions can be compared to those of, for example, Refs.[13].

Turning to the results, the normalized (see Ref. [10]) pseudoscalar and vector meson dressing
functions are plotted for the chiral quark case in Fig. 3 and one sees that indeed, the functions

6
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Figure 3: [left panel] Pseudoscalar and [right panel] vector normalized vertex functions with (equal) chiral
quarks, plotted as a function ofx =~k2. All dimensionfull quantities are in appropriate units of the string
tension,σ . See text for details.
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Figure 4: Pseudoscalar and vector meson masses [left panel] and leptonic decay constants [right panel] with
equal mass quarks, plotted as a function of the quark mass. All dimensionfull quantities are in appropriate
units of the string tension,σ . See text for details.

are all finite. In Fig.4, the meson masses and leptonic decay constants for equal quark masses are
plotted (in units of the string tensionσ ). Inserting typical values forσ [10], it becomes obvious
that whilst dynamical chiral symmetry breaking is visible (MPS∼

√
m as m→ 0), the leptonic

decay constants are too small, as is the mass-splitting between states for larger quark masses.
Looking at the case for one fixed chiral quark plotted in Fig. 5, one sees that both the pattern
for chiral symmetry breaking (MPS ∼

√
m as m→ 0) and the leading order heavy quark limit

( fPS
√

MPS, fV
√

MV ∼ const. asm→ ∞) are present. The leading order Coulomb gauge truncation
scheme thus qualitatively accommodates both chiral and heavy quark physics.
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