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1. Introduction

In the last few years, considerable progress has been made in our understanding of the infrared
(IR) behavior of the fundamental Green’s functions of QCD, such as gluon, ghost, and quark prop-
agators [1, 2, 3, 4, 5, 6, 7, 8, 9], as well as some of the basic vertices of the theory [6, 10, 11, 12],
and their relation to the confinement and dynamical chiral symmetry breaking (CSB) [8]. In fact,
there is a broad consensus that one of the most important ingredients for the CSB is the non-abelian
quark-gluon vertex, which controls the way the ghost sector enters into the gap equation. Specif-
ically, this vertex introduces a numerically crucial dependence on the ghost dressing function and
thequark-ghost scattering amplitude[13]. This latter quantity satisfies its own dynamical equation,
which may be decomposed into individual integral equations for its various form factors. Here we
will present the first steps towards the determination of the longitudinal quark-gluon vertex form
factors for a particular kinematic configuration: thequark symmetric limitwhere the incoming and
outgoing quark momenta have the same magnitude and opposite signs. To do that,we compute
numerically the relevant quark-ghost scattering kernel components at the “one-loop dressed” ap-
proximation, at the same kinematic point, using as ingredients the nonperturbative lattice results
for the gluon propagator and ghost dressing function of Ref. [2], and the solution of the quark gap
equation obtained in [13] for the full quark propagator.

2. Ingredients and definitions

Consider the conventional quark gluon vertex shown in Fig. 1, and defined according to

iΓAa
µ ψ j ψ i

(q, p2,−p1) = igta
i j Γµ(q, p2,−p1); Γ(0)

µ (q, p2,−p1) = γµ ; q+ p2 = p1. (2.1)

Aa
µ

p2p1

q

ψi ψj

iΓAa
µψjψi

(q, p2,−p1) = q + p2 = p1

Figure 1: The conventional quark-gluon vertex with the momenta routing used throughout the text.

In the Batalin-Vilkoviski (BV) formalism, the Slavnov-Taylor identity (STI) satisfied by this
vertex reads (in the kinematic configuration chosen) [5]

qµΓAa
µ ψ j ψ i

(q, p2,−p1) = F(q2)
[
Γψkψ i

(p1)Γψ j caψ∗
k
(p2,q,−p1)+Γψ∗

k ψ ic
a(p2,−p1,q)Γψ j ψk

(p2)
]
.

(2.2)
In the formula aboveF(q2) denotes the so-called ghost dressing function which is related to the
full ghost propagatorDab(q2) through

iDab(q2) = iδ abF(q2)

q2 ; F(0)(q2) = 1, (2.3)
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while Γψψ is the inverse of the full fermion propagatorSi j (p) obtained by solving the equation

iSi j (p)Γψ j ψk
= δik; iS(0)

i j (p) = iδi j S
(0)(p) = iδi j

1
p/−m

. (2.4)

The standard decomposition for the inverse of the full quark propagatorS−1(p) is given by

iS−1(p) = i[A(p2)/p−B(p2)] , (2.5)

whereA(p2) andB(p2) are, respectively, the Dirac vector and scalar components.
In addition,ψ∗

k andψ∗
k represent the so-called antifields associated to the spinor fieldsψk and

ψk respectively; they have ghost charge -1, (mass) dimension 5/2, and obey Bose statistics. The
Green’s functionsΓψ∗

k ψ ic
a andΓψ j caψ∗

k
are shown in Fig. 2.

These two functions are not independent, being related by “conjugation”; indeed, to get one
from the other, we need to perform the following operations: (i ) exchange−p1 with p2: −p1 ↔ p2;
(ii ) reverse the sign of all external momenta:q,−p1, p2 ↔ −q, p1,−p2; (iii ) take the hermitian
conjugate of the resulting amplitude.

Then, introducing the function

Ha
i j (q, p2,−p1) = gtai j H(q, p2,−p1) =−iΓψ j caψ∗

k
(p2,q,−p1), (2.6)

H
a
i j (−q, p1,−p2) = gtai j H(−q, p1,−p2) = iΓψ∗

k ψ ic
a(p2,−p1,q),

and factoring out a the common color and gauge coupling combinationgtai j , the STI (2.2) can be
rewritten as

qµΓµ(q, p2,−p1) = F(q2)
[
S−1(p1)H(q, p2,−p1)−H(−q, p1,−p2)S

−1(p2)
]
, (2.7)

with H obtained fromH through the set of operations detailed above. TheH function admits the
general form factor decomposition [14]

H(q, p2,−p1) = X0I+X1p1/ +X2p2/ +X3σ̃µν pµ
1 pν

2, (2.8)

where the form factorsXi are functions of the momenta,Xi = Xi(q2, p2
2, p

2
1) andσ̃µν = 1/2[γµ ,γν ]

(notice thei difference with respect to the conventional definition of this quantity). Onethen obtains
automatically the expansion

H(−q, p1,−p2) = X0I+X2p1/ +X1p2/ +X3σ̃µν pµ
1 pν

2, (2.9)

whereXi = Xi(q2, p2
1, p

2
2).

At tree-level, one clearly hasX(0)
0 = X

(0)
0 = 1, with the remaining form factors vanishing.

The most general Lorentz decomposition for the longitudinal part of the vertexΓµ(q, p2,−p1)

appearing in Eq. (2.7) can be written as [14]

Γµ(q, p2,−p1) = L1γµ +L2(/p1+/p2)(p1+ p2)µ +L3(p1+ p2)µ +L4σ̃µν(p1+ p2)
ν , (2.10)

whereLi are the form factors, whose dependence on the momenta has been suppressed, in order to
keep a compact notation,i.e., Li = Li(q2, p2

1, p
2
2). Notice that the tree level expression forΓ(0)

µ is

recovered settingL1 = 1 andL2 = L3 = L4 = 0; then,Γ(0)
µ = γµ .
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ψ∗
k

= g taik +

ψi

qp2

p1

ψ∗
k ca

iΓψ∗

kψ
∗

i c
a(p2,−p1, q) =

ψi

p1

ca

+ · · ·

ψj

= −g takj +

ca

p1p2

q

ψj ψ
∗

k

iΓψjcaψ
∗

k
(p2, q,−p1) =

ca

q

p2

ψ
∗

k

p1

k + · · ·

p2 q

k

Figure 2: The auxiliary functions through which the STI satisfied by the quark-gluon vertex is satisfied. For
convenience we show the momenta routing matching the kinematics chosen for the quark-gluon vertex as
well as the tree-level and one-loop terms in the corresponding loop expansion.

Contracting Eq. (2.10) withqµ , we have

qµΓµ = (p2
1− p2

2)L3I+[(p2
1− p2

2)L2+L1]/p1+[(p2
1− p2

2)L2−L1]/p2+2L4σ̃µν pµ
1 pν

2. (2.11)

In addition, substituting into Eq. (2.7) the full quark propagatorS−1(p) of Eq. (2.5), and the
expressions forH andH given by Eqs. (2.8) and (2.9) respectively, we find that the rhs of Eq.(2.11)
can be also expressed in terms of the functionsA, B andXi ’s. Then, it is relatively straightforward
to demonstrate that theLi ’s may be expressed as [13]

L1 =
F(q)

2

{
A(p1)[X0− (p2

1+ p1·p2)X3]+A(p2)[X0− (p2
2+ p1·p2)X3]

}

+
F(q)

2

{
B(p1)(X2−X1)+B(p2)(X2−X1)

}
;

L2 =
F(q)

2(p2
1− p2

2)

{
A(p1)[X0+(p2

1− p1·p2)X3]−A(p2)[X0+(p2
2− p1·p2)X3]

}

−
F(q)

2(p2
1− p2

2)

{
B(p1)(X1+X2)−B(p2)(X1+X2)

}
;

L3 =
F(q)

p2
1− p2

2

{
A(p1)

(
p2

1X1+ p1·p2X2
)
−A(p2)

(
p2

2X1+ p1·p2X2
)
−B(p1)X0+B(p2)X0

}
;

L4 =
F(q)

2

{
A(p1)X2−A(p2)X2−B(p1)X3+B(p2)X3

}
. (2.12)

It is interesting to notice that setting in Eq. (2.12)X0 = X0 = 1 andXi = Xi = 0, for i ≥ 1, and
F(q) = 1, we obtain the following expressions

L1 =
A(p1)+A(p2)

2
, L2 =

A(p1)−A(p2)

2(p2
1− p2

2)
, L3 =−

B(p1)−B(p2)

p2
1− p2

2

, L4 = 0. (2.13)

which give rise to the so-called Ball-Chiu (BC) vertex [15], widely employedin the literature for
studies of CSB [8].
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3. The “one-loop dressed” approximation for H

It is clear from Eq. (2.12), that in order to determine the longitudinal form factorsLi , it is
necessary to know the nonperturbative behavior of the form factorsXi .

To obtain a nonperturbative estimate forH and its form factors, we will study the “one-loop
dressed” contribution represented in the diagram of Fig. 3, and given by

p1

q

p2

H [1](q, p2,−p1) = 1 − k

k + p2

k − q

Figure 3: The quark-ghost scattering kernel at “one-loop dressed” approximation.

H [1](q, p2,−p1) = 1−
1
2

iCAg2
∫

k
∆µν(k)Gν(k−q)D(k−q)S(k+ p2)Γµ(k, p2,−k− p2) , (3.1)

whereCA is the eigenvalue of the Casimir operator in the adjoint representation,∆µν(q) is the full
gluon propagator; in the Landau gauge

i∆ab
µν(q) =−iδ ab

[
gµν

−
qµqν

q2

]
∆(q) . (3.2)

For evaluating Eq. (3.1) further, we will use the following approximations: (i) the full gluon-
ghost vertex will be replaced by its tree-level value,i.e. iGabc

ν = −g fabc(k−q)ν . Note that, since
the full ∆µν(k) is transverse, only theqν part of the gluon-ghost survives sincekν∆µν(k) = 0; (ii)
for the vertexΓµ we will use the following Ansatz

Γµ(k, p2,−k− p2) =
F(k)

2
[A(p2+k)+A(p2)]γµ

+
F(k)

2
kµ

k2

[
[A(p2+k)−A(p2)] (2 /p2+/k)−2[B(p2+k)−B(p2)]

]
.(3.3)

Notice that the above Ansatz satisfies the STI of Eq. (2.7) whenH = 1. Again, due to the
transversality of∆µν(k), the second term on the rhs of Eq. (3.3), which is proportional to the
longitudinal momentumkµ , does not contribute in the Eq. (3.1).

Then, inserting into Eq. (3.1) the propagators of Eq. (3.2) and the Ansatzfor the quark-gluon
vertex given by Eq. (3.3), it is straightforward to derive the following expression forH

H [1](q, p2,−p1) = 1+ i
g2CA

4

∫

k
K (p2,q,k) f (p2,q,k) , (3.4)

5
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where

K (p2,q,k) =
D(k−q)F(k)∆(k)[A(p2+k)+A(p2)]

A2(p2+k)(p2+k)2−B2(p2+k)
, (3.5)

while all spinorial structure is included in

f (p2,q,k) = A(p2+k)

[
/p2 /q+/k /q−k ·q−/p2/k

q·k
k2

]
+B(p2+k)

[
/q−/k

q·k
k2

]
. (3.6)

4. Quark symmetric configuration

The projection of the form factorsXi , appearing in the definition (2.8), for arbitrary kine-
matics boils down to a complicated system of several equations. In order to make the problem
at hand technically more tractable, we will only compute it in a specific kinematicallimit: the
quark symmetric limitwhere the quark momenta have the same magnitude and opposite signs,i.e.
p1 =−p/2, p2 = p/2 andq=−p .

In this kinematical configuration, it is easy to see that only the (Dirac) form factorL1 survives,
and the vertex of Eq. (2.10) simplifies to

Γµ(−p, p/2, p/2) = L1γµ ; where L1 ≡ L1(p
2, p2/4, p2/4) . (4.1)

In addition, the quark-ghost scattering kernelH andH, given by Eq. (2.8) and Eq. (2.9), simplify
in this limit, and the terms proportional to/p become linearly dependent such that

H(−p, p/2, p/2) = X0I+(X2−X1)/p/2,

H(p,−p/2,−p/2) = X0I+(X1−X2)/p/2. (4.2)

Settingp1 = p2 = p/2 andq=−p in Eq. (3.4), and taking the appropriate traces, it is straight-
forward to derive the following expressions for the form factorX0 and the subtractionX2−X1 (in
the Euclidean space)

X0(p) = 1+
g2CA

8

∫

k

D(p+k)F(k)∆(k)A2[A2+A1]

A2
2(p/2+k)2+B2

2

[
p2

−
(p·k)2

k2

]
,

X2(p)−X1(p) =
g2CA

2p2

∫

k

D(p+k)F(k)∆(k)B2[A2+A1]

A2
2(p/2+k)2+B2

2

[
p2

−
(p·k)2

k2

]
, (4.3)

whereA1 = A(p/2), A2 = A(p/2+k), B1 = B(p/2), andB2 = B(p/2+k). Due to the fact that the
momentap1 andp2 have the same magnitude in this configuration, it is possible to show from the
definition (2.9) thatX0 = X0 andX2−X1 = X2−X1.

Then, it is straightforward to see, from Eq. (2.12), that in the symmetric quark limit L1 simpli-
fies to

L1 = F(p)X0(p)A(p/2)+F(p)[X2(p)−X1(p)]B(p/2) . (4.4)

As we have seen in Eq. (4.3), both form factorsX0 andX2−X1 depend on the nonperturbative
form of the four basic Green’s functions, namely∆(q), F(q), A(p) andB(p). Therefore, in order

6
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Figure 4: The scalar form factorX0 (left panel) and the combination of the form factorsX2−X1(right panel)
in the symmetric quark configuration forα(µ2) = g2/4π = 0.30.

to proceed with the numerical analysis, we use for∆(q) and F(q) the lattice data obtained by
[2], while for A(p) andB(p) we use the solution of the quark gap equation obtained in Ref [13].
All these functions were renormalized atµ = 4.3 GeV, and in all our calculations we have fixed
α(µ2) = g2/4π = 0.30.

In Fig. 4, we show the numerical results forX0(p) (left panel), andX2(p)−X1(p) (right panel).
On the left panel of Fig. 4, we can see thatX0 shows a maximum located in the intermediate
momentum region (around 1− 2GeV2), while in the UV and IR regions the curve goes to its
perturbative valuei.e. X0 → 1.

On the right panel of Fig. 4 we notice that the combinationX2−X1 saturates at a finite value
in the deep IR region, while in the UV it vanishes asymptotically.

With all ingredients available, we are now in position to determine the behavior ofthe Dirac
form factorL1 in the symmetric quark configuration.

In Fig. 5 we show the result forL1 obtained from Eq. (4.4). As we can clearly see,L1 develops
a sizable plateau in the IR region, and as expected, it recovers its perturbative value in the deep UV
region.

1E-3 0.01 0.1 1 10 100
0

1

2

3

4

5

 

 

L 1(p
2 ,p

2 /4
,p

2 /4
)

p2 [GeV2]

Form factor - Vertex
Quark symmetric configuration

Figure 5: Numerical result for the vertex form factorL1 in the quark symmetric configuration when
α(µ2) = 0.3.
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5. Conclusions

We have presented the general methodology for determining the longitudinalform factors of
the quark-gluon vertex from the fundamental STI that it satisfies. A key ingredient in this analysis
is the quark-ghost scattering kernel,H and its conjugateH, whose field-theoretic origin and basic
kinematic properties are rather subtle.

The first nonperturbative estimate of the form factors comprisingH has been computed using
the “one-loop dressed” approximation of the corresponding integral equation, under certain rea-
sonable dynamical assumptions. For the purposes of this presentation we have limited our analysis
to the particular kinematic limit known as “quark symmetric configuration”, which gives rise to
considerable technical simplifications. The Dirac form factor of the quark-gluon vertex,L1, has
been obtained in this particular kinematic configuration, and its basic featureshave been studied.
The methodology presented here may be directly extended to arbitrary kinematic configurations,
furnishing valuable information on such a fundamental quantity as the quark-gluon vertex.
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