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A precision determination of the neutral-pion width would improve determinations of the splitting
between the up- and down-quark masses, and matrix elements for the decay of neutral mesons into
two photons could play a role in the attempt to probe beyond-the-Standard Model physics in muon
g− 2 experiments. The theoretical error is dominated by hadronic light-by-light diagrams, and
since direct measurements are extremely difficult, model calculations factorize it into two-photon
diagrams connected by the lightest hadrons. We employ perturbative techniques to express the
photon as a superposition of QCD eigenstates accessible in lattice-QCD calculations and found
that vector-meson dominance is a poor description of the two-photon decay process when both
photons are off shell.
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1. Introduction

The experimental measurement of the anomalous magnetic moment of the muon came early
from CERN and the more-recent BNL E821 tightened the world average to 116592089(63)×
10−11, providing one of the most accurate measurements of any quantity in particle physics. The
future Fermilab experiment E989 intends to improve the precision by another factor of 4 and make
the systematic error the same order as the statistical. This could lead to a discovery of the biggest
discrepancy from the theoretical Standard Model (SM) value, revealing new physics. The theoret-
ical Standard Model calculations are complicated, necessitating the inclusion of effects including
QED, electroweak and hadronic corrections which give 116591790(65)× 10−11[1]. This means
that there exists a 3–4 σ discrepancy between theory and experiment, depending on which theory
result is quoted. Many have supposed that this may be an indication of new physics or that have
we miscalculated some part of the Standard Model contributions.

Therefore, we consider all the theoretical contributions order by order in α: the QED and weak
contributions are well known, but hadronic vacuum polarization and light-by-light need further
work to decrease the remaining theoretical uncertainty.

The QED contribution is well known from Schwinger’s one-loop O(α) calculation[2] to mod-
ern calculations at 5 loops (O(α5))[3]. In the hadronic sector, the leading terms are the hadronic
vacuum polarization at O(α2), and the hadronic light-by-light contribution, starting from (α3).
The hadronic light-by-light (HL×L) gives the biggest uncertainty of all the theoretical contribu-
tions, 105(26)×10−11.

Since the biggest uncertainties in the SM calculation of g−2 are due to the hadronic contribu-
tions, there are many on-going efforts to examine them using lattice QCD (LQCD). These can be
grouped into two main directions: Firstly, many groups have worked on the leading-order hadronic
vacuum polarization at O(α2), including Aubin et al.[4], UKQCD[5], ETMC[6] and Mainz[7]
(who have reported their most recent work at this conference).

The second direction is to pursue the hadronic light-by-light at O(α3). One method for ad-
dressing HL×L in LQCD is direct calculation (including QED photon effects explicitly as a dy-
namical gauge field), as used by RBRC Collaboration (Blum et al.[8, 9]). However, such a direct
calculation of QED on the lattice is very difficult (in part due to strong finite-volume effects), and
such techniques have only recently started to see significant signal. Indirectly, one can study HL×L
by factorization, evaluating the four-point function as an integral over products of two three-point
subdiagrams (each containing two photons) connected by a long-lived neutral meson[10]. Then, by
studying the neutral-meson–to–two-photons off-shell form factors, we can provide input to model
estimations of the HL×L contribution. We focus on this method in this proceeding.

Many mesonic processes can contribute to the light-by-light factorized diagram, but the pion
dominates; in this work, we will address the π0 and ηs contributions, where ηs denotes the purely
valence-ss̄ part of the η . Experimentally, due to the use of transverse-momentum cuts during event
reconstruction, only the form factors where of one of the photons is nearly on-shell is measured.
This means that in the factorized integral, vector-meson dominance must be assumed to fill out the
two-dimensional form factor. We hope to use lattice-QCD calculations to provide inputs for the
HL×L contribution that allow both photons to go off shell. We can use lattice QCD to provide data
in missing kinematic regions of the pion form factor and for more mesons than experiment.
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Before elaborating on the lattice approach, let us review the experimental situation. The most
studied two-photon decay process in experiment is the neutron pion. There are three main classes
of experiment: neutral-meson lifetime, photon fusion and Primakoff effect.

The direct neutral-meson lifetime measurement using time of flight of the meson can only
measure the form factor with both photons on shell (Q2

1 =Q2
2 = 0). The most accurate measurement

was done at the CERN SPS just waiting for an in-flight pion to decay between foil sheets of varying
distances[11].

Primakoff effect or photoproduction experiments, such as those done by Cornell[12], DESY
and Tomsk in the 1970s and by PrimEx[13] in 2010 use the fusion of a nearly real photon emitted as
bremsstrahlung from an electron beam off of the electromagnetic field of a heavy nucleus to form a
neutral meson. Such experiments are capable of great precision measurement but there have been
discrepancies between the measurements of different labs. Although it is possible to measure form
factors with one off-shell photon, most experiments merely reported measurements of the width.
PrimEx has measured π , η , η ′ widths with future plans for form factors. Primakoff experiments
can be precise, but they require nuclear electromagnetic form factors as input to extract the decay
width. Given that nuclear EMC effects are still a puzzle, this introduces some uncertainty.

Electron-positron colliders can produce neutral mesons when two photons radiated from the
leptons fuse. Such photon-fusion processes have been studied in the CELLO[14] and CLEO[15]
experiments in the 1990s and more recently by BaBar[16, 17] and Belle[18]. Photon fusion experi-
ments can measure off-shell form factors, but only for one off-shell photon. The early experiments
at low Q2 < 10 GeV2 seemed in good agreement with an asymptotic approach to the perturbative
QCD (pQCD) prediction. However, BaBar found that the form factor continued to rise without go-
ing to the pQCD value at Q2 as high as 40 GeV2; contrariwise, Belle found results lying between
BaBar and pQCD.

2. Two-Photon Decays on the Lattice

For the meson-to-two-photon decay process, we want to calculate the matrix element

〈γ(q1,λ1)γ(q2,λ2)|Φ(p)〉, (2.1)

where Φ(p) is a neutral-meson operator of momentum p and the two photons have momenta q1,2

and polarizations λ1,2. An operator carrying the quantum numbers of the photon in lattice QCD
(without also including QED fields) will instead create a rho meson (or two pions, depending on
the quark mass used). Ji and Jung [19] provide an elegant solution for looking at such low-energy
matrix elements through lattice-QCD techniques. Let us start from the continuum path integral of
the wanted matrix elements. We first use perturbative QED to expand in terms of photon fields A,
coupling to the quark electromagnetic current.

∫
DADψ̄ Dψ eiSQEDAµ(y)Aν(x)≈∫

DADψ̄ Dψ eiS0
(
...+

[
ψ̄γ

ρ
ψAρ

]
(z) [ψ̄γ

σ
ψAσ ] (w)+ ...

)
Aµ(y)Aν(x) (2.2)
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Then, we Wick contract the photon fields into propagators. The ε’s are the polarization tensors of
the photons.

− e2 lim
q′→q

ε
(1)∗
µ ε

(2)∗
µ q′1

2q′2
2×∫

d4xd4yd4wd4zeiq′1·xDµρ(0,z)Dνσ (x,w)〈0|T{ jρ(z) jσ (w)}|Φ(p)〉 (2.3)

Using the explicit form of the photon propagator, most of these integrals go to delta functions, and
the above equation simplifies into

e2
ε
(1)∗
µ ε

(2)∗
µ

∫
d4xeiq1·y〈0|T{ jµ(0) jν(y)}|Φ(p)〉 (2.4)

Now we can rotate into Euclidean space unless we hit a pole:

e2ε
(1)
µ ε

(2)
µ

ZΦ(p)
2EΦ(p)e

−EΦ(p)(t f−t)

∫
dti e−ω1(ti−t)×

〈
T
{∫

d3~xe−i~p·~x
ϕΦ(~x, t f )

∫
d3~yei~q2·~y jν(~y, t) jµ(~0, ti)

}〉
,

(2.5)
where the {E,Z}Φ(p) are the meson energy and operator overlap factor, ω1 is one of the photon’s
frequency, which can be chosen arbitrarily (while the the photon’s helicity will be fixed through
energy conservation), t f is the Euclidean time when the meson is created. The nearest pole will be
at the ρ mass or a cut will begin at the ππ energy, so we must keep q2 < M2

ρ (or E2
ππ ).

The expression between the angled brackets is just the three-point correlation function with
a meson on one end and vector currents at the other end and inserted. This expression we can
evaluate on the lattice. The remaining parts describe how to combine QCD states into a photon of
the appropriate energy. The most straightforward way to evaluate this is to compute the three-point
function on all ti and perform the integral explicitly.

In this work, we concentrate our exploratory work on clover-like actions with the lattice
spacing (spatial direction) fixed around 0.12 fm. We use the Hadron Spectrum Collaboration’s
anisotropic clover lattice with Mπ ∈ {830,560,450,390} MeV (100 configurations each)[20] and
MILC’s HISQ lattices with Mπ ≈ 310 MeV, Mηs ≈ 680 MeV on 310 and 140 MeV sea pions[21,
22]; other lattice spacings are in progress. For the explicit-integral method, we fix the location of
the neutral meson at some timeslice and project onto zero momentum. We generate propagators us-
ing the clover action under Dirichlet boundary conditions and apply Gaussian smearing to improve
overlap with the ground-state mesons. We compute a sequential source from a point source at ti,
continuing through the smeared source at t f with momentum projection. We project onto momenta
0 < |~q2|2 ≤ 5 at the insertion at t. The left-hand side of Fig. 1 shows a demo for the setup.

In order to ascertain whether our calculation will suffer from lattice distortions, we need to
scrutinize the time-dependence of the integrand. If the integrand is peaked too sharply, we will not
be able integrate it accurately; if it is too wide, we cannot capture the integral within the lattice
time extent. In addition, we need to check for distortion due to the boundaries and proximity to
the sink timeslice. The peak is well resolved, neither too narrow nor too wide. Figure 1 shows an
example of the integrand from an anisotropic lattice with Mπ ≈ 850 MeV. The meson location is
fixed at t f = 120 at this example, and the source is Gaussian smeared. There is a clearly defined
and undistorted peak structure, even at near-boundary times (t = 30,100).
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Figure 1: (Left) Schematic of the calculation of the lattice three-point correlation function with a smeared
meson operator on the right at t f and point electromagnetic vector-current operators on the left (ti) and
center (t). Momentum is projected at the meson and current insertion. The first solution of the Dirac
equation yields the black quark propagator, while the blue propagator requires a second solution using a
sequential source. (Right) Example of the integrand evaluated from anisotropic lattices at the SU(3) point
(with Mπ ≈ 832 MeV). Three peaks are shown with varying t, while the x-axis shows the time to be integrated
over, ti. The peaks are free from distortions that may occur due to the Dirichlet boundary and location of the
meson operator.

We perform the integral explicitly by summing over all ti for each value of t. Due to kinematic
factors, the integral only nonzero when εµνρσ εµενqρ

1 qσ
2 6= 0. We see a clear plateau in the expected

region, away from t = 0 and t = t f on the left-hand side of Fig. 2, which shows ~q1 = x̂ for the .
Although it is possible for there to be exponential contamination from excited states, no such
problem is seen here. This may be due to the large gap between the ground-state pion and its first
excited state or due to the excited pion having small coupling to the two-photon state. All the
rotationally equivalent momenta and polarizations at a given set of Q2 are averaged in the final
results.

3. Form-Factor Results

Before we look at the pion radiative form factors, let us start with checking the better known
quantity, the pion radiative width Γπ0→γγ , at the physical pion mass. We use the data from anisotropic
clover lattices with pion masses below 600 MeV and a naive extrapolation of the form aM2

π +bM4
π .

We obtain 8.7(1.4) eV (statistical error only) while the best experimental value (from PrimEx) is
7.82(14)(17) eV, as shown in the right-hand side of Fig. 2. This may not be a reliable extrapolation
given that the pion masses are heavy; however, it gives us some indication that the analysis is on
the right track and that the O(a) effects are likely under control.

Since we are performing the integral explicitly, we can change the weighting factor to set Q2
1

arbitrarily. This means that we are free to explore regions of parameter space where both photons
are off shell, which will be useful for comparing to photon fusion experiments and for use in the
factorization of light-by-light. The data are well described by a monopole fit:

F (Q2
1,Q

2
2) =

F(Q2
1)

1+Q2
2/M2

pole(Q
2
1)
, (3.1)
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Figure 2: (Left) Integrated matrix element for~q1 ∝ x̂, on the anisotropic lattices at the strange-quark mass.
The fitted value over the plateau region is shown as a pink bar. (Right) Log-log plot of the pion radiative
width calculated on anisotropic clover lattices at relatively heavy pion mass (Mπ ∈{400,600}) (black circles)
and a plausible extrapolation using a quartic form (blue), along with the experimental value (red star).

where we expect from vector-meson dominance that the pole mass should be the vector-meson
mass (ρ for light quarks, φ for strange quarks). See the left-hand side of Fig. 3 for an example in
the a = 0.12 fm strange-pseudoscalar (ηs) meson form factor with Q2

1 ∈ [−0.18,0.72] GeV2 and
the monopole fitted bands.

Vector-meson dominance suggests that the pole mass should be approximately equal to the
vector-meson mass. We plot Mpole as a function of Q2

1 and find that the agreement with the lattice
vector-meson mass is relatively good for an on-shell photon but not so good off shell. The right-
hand side of Fig. 3 shows the fitted pole mass values (black points) for the ηs along with the corre-
sponding vector meson φ measured (the red line) on the same ensemble. Note that we obtained sim-
ilar results for earlier low-statistics data on the CP-PACS clover a≈ 0.09 fm, Mπ ≈ 725 MeV [23],
as well as other clover on HISQ a≈ 0.12,0.09 fm, Mπ ≈ 310 MeV. However, we will need higher
statistics to see more than one sigma discrepancy. This suggests that the light-by-light contribution
currently being estimated via VMD will require further examination.

In summary, this is an exciting time to explore the limits of the Standard Model with lattice
gauge theory. New techniques are allowing us to extend the reach of lattice gauge theory, such
as the technique suggested by Ji and Jung, which allows access to electromagnetic quantities with
two photons in lattice QCD. With sufficient computational resources, lattice calculations can probe
photon virtualities inaccessible to experiment. Our current results remain limited by low statistics;
however, these statistical errors can be reduced by an order of magnitude. Preliminary results
reproduce the well-measured pion decay width by extrapolating from heavy pion mass ensembles.
Beyond the on-shell form factor, we find that the vector-meson dominance model does not work
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Figure 3: (Left) ηs form factors from clover on HISQ lattices with pion mass of 310 MeV. The Q2
1 varies

from −0.18 to 0.72 GeV2. The fits shown are simple monopoles with each Q2
1 being fit separately. (Right)

The extracted pole masses from vector-meson dominance (VMD) extrapolation (black circles) and the vector
meson (in this case φ ) mass directly calculated (the red line).

very well. This implies that more advanced techniques will be needed to apply the factorized
integral to the hadronic light-by-light contribution to muon g− 2. We intend to further this work
by calculating radiative form factors using lighter pion masses and including other neutral mesons,
such as the scalar and axial. Finally, we will investigate the possibility of applying the formalism
of Ji and Jung directly to the problem of hadronic light-by-light; this would yield a four-point
correlator and multiple integrals, but may yet be easier than the direct QED+QCD method.
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