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Recently new - one subtracted dispersion relations with imposed crossing symmetry condition for
the ππ S,P,D - and F-wave scattering amplitudes have been derived and presented [1,2]. Together
with the well known Roy equations with two subtractions they have led to unitary parameteriza-
tion of many partial wave amplitudes in very wide energy range. They have allowed e.g. for a
very precise, unambiguous and long waited determination of scattering lengths and parameters of
the f0(500) (often called σ ) and f0(980) resonances in the S wave.
In this paper, general mathematical structure of these dispersion relations is presented. It is shown
that these equations are very demanding i.e. produce output amplitudes with very small errors
what significantly increases the accuracy of determined amplitudes.
The S and P-wave amplitudes have been directly fitted to the once subtracted dispersion relations
(called GKPY - see [1]), forward dispersion relations, sum rules and experimental data including
very recent Kl4 one. Making analytic continuation of these two amplitudes to the complex energy
plane, the parameters of the lowest resonances have been very precisely determined. For example
the pole of f0(600) has been found at (457+14

−13− i279+11
−7 ) MeV and pole of f0(980) at (996±7−

i25+10
−6 ) MeV. This led to significant changes in section of Particle Data Tables 2012 devoted for

light scalar mesons in comparison with previous editions.
For all waves, the threshold parameters (scattering lengths and slopes) have been also very pre-
cisely determined.
It is worthy noting that although the presented here amplitudes of the D and F waves were not
fitted directly to dispersion relations in [1], they fulfill crossing symmetry quite well up to ∼
800 MeV (some work is still needed).
Those new, once subtracted dispersion relations for the ππ S,P,D - and F partial waves, form a
complementary set of theoretical constraints that imposed on the amplitudes fitted only to experi-
mental data can define them clearly and precisely. Example of practical application of the GKPY
equation in the testing of such input amplitudes is presented and commented.
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1. Introduction

Recent dispersive analysis of ππ scattering data (including very recent, Kl4 experimental re-
sults) led to construction of the ππ amplitudes in many partial waves (S,P,D and F) [1, 2] and in
energy range from the threshold to 1420 MeV. Higher energy isospin amplitudes were given by
Regge parameterizations.

The real parts of these amplitudes (called input amplitudes) have been confronted with the out-
put ones given by dispersive relations. The output amplitudes have been constructed after imposing
the theoretical constraints from Roy-type dispersion relations, forward ones (FDR) and the sum
rules for the threshold parameters (SR) [1], on the initial unconstrained fit to the data. All output
amplitudes have been achieved with very high precision due to implementation of very demanding
the Roy-type once subtracted dispersion relations with imposed crossing symmetry condition (for
the S and P waves called GKPY equations, derived and presented in [1]).

The fact that, due to the very good fits, the S and P amplitudes fulfill conditions imposed by
the dispersion relations (e.g. crossing symmetry), ensured that analytical continuation of these am-
plitudes on the complex energy plane provides reliable and precise information on the resonances
e.g. the f0(500) and f0(980) in the S wave.

The GKPY dispersive equations relate imaginary part of the input (IN) with real part of the
output (OUT ) amplitudes tI

`(s = m2
ππ) and read

Re tI(OUT )
` (s) =

2

∑
I′=0

CII′
st aI′

0 +
2

∑
I′=0

4

∑
`′=0

−
∞∫

4m2
π

ds′KII′
``′ (s,s

′) Im tI′(IN)

`′ (s′) (1.1)

where aI′
0 are subtraction terms ST I

` being combinations of the S wave scattering lengths given by
threshold expansion RetI

`(p) = p2`(aI
`+ p2bI

`+ ...) and KII′
``′ (s,s

′) are kernels derived by imposing
s↔ t crossing symmetry conditions on the ππ ↔ ππ amplitudes. Amplitudes tI

`(s) are functions
of experimentally determined phase shifts δ I

` (s) and inelasticities η I
`(s)

tI
`(s) =

√
sη I

`(s)e
iδ I

` (s)−1

2i
√

s−4m2
π

. (1.2)

Integration region in Eq. (1.1) has been divided into two parts: for the kernel terms KT I
` (s) and for

driving ones DT I
` (s) (presented in [1, 2]). The kernel terms account for contributions of all partial

waves (` = 0...3) at effective two pion mass smaller then
√

s′max = 1.42 GeV. The driving terms
enclose contributions from the higher

√
s′ region. The value of

√
s′max is given by two pion mass

up to which experimental data are sufficiently precise to determine the amplitudes tI
`(s).

2. Method and results

The fits have been controlled by difference ∆(s j) =| Re tI(OUT )
` (s j)−Re tI(IN)

` (s j) | which can
be treated as measurement of fulfilment of crossing symmetry by analyzed amplitudes. The smaller
this difference the better crossing symmetry for given amplitude is satisfied. Consistency check of
the fit with all theoretical constraints has been done by minimization of the sum

χ
2
tot = χ

2
data + d̄2

Roy + d̄2
GKPY + d̄2

FDR + d̄2
SR (2.1)
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where d̄2
i = 1

np

np
∑
j

(
∆i(s j)

δ∆i(s j)

)2
are averaged distances of ∆i(s j) taken with uncertainties δ∆i(s j) cal-

culated using Monte Carlo method (for details see [1, 2]).
In the initial fit, values of these averaged differences for the Roy and GKPY equations and for

the FDR were: d̄2
Roy = 0.87, d̄2

GKPY = 1.9 and d̄2
FDR = 2.0 while corresponding values in the final

fit were 0.14, 0.32, 0.4. Significant difference between averaged distance for the Roy equations
and that for the GKPY is caused by much smaller values of δ∆i(s j) above about 400 MeV in the
GKPY equations than in the Roy ones.

The curves on Figures 1-6 present the input and output amplitudes for the GKPY equations
and components ST I

` ,KT I
` (s) and DT I

` (s) of the output amplitudes for the S,P,D and F-waves.
For the S and P waves the differences ∆i(s j) are everywhere smaller than δ∆i(s j). Although the
amplitudes of the D and F waves have not been fitted directly to dispersion relations and data as the
S and P waves, they also indicate on quite good agreement between input and output amplitudes
below ∼ 800 MeV. As was already noticed here and analysed in [1], very important advantage of
the GKPY equations over the Roy ones is very slow increase of the output uncertainties. It is caused
by fact that contrary to the Roy equations, the subtracting terms in the GKPY ones are constant and
their errors do not propagate with increasing energy.

Figure 1: Left figure: ππ input (solid line) and output (dashed line) amplitudes for the S0 wave together
with output error band. Right figure: components of the S0 output amplitude - subtracting term (ST), kernel
term (KT) and driving term (DT) together with corresponding error bands.

Existence of resonances is always associated with occurrence of poles at √spole in the com-
plex energy plane. Relation between position of a given pole and parameters of a corresponding
resonance can be expressed by Mres = Re(√spole) and Γres =−2Im(spole). Making analytical con-
tinuation of the output amplitudes from the Roy and GKPY equations to the complex energy plane
the poles related with resonances f0(500), f0(980) and ρ(770) have been found [3].
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Figure 2: Left figure: ππ input (solid line) and output (dashed line) amplitudes for the P1 wave together
with output error band. Right figure: components of the P1 output amplitude - subtracting term (ST), kernel
term (KT) and driving term (DT) together with corresponding error bands.

Figure 3: Left figure: ππ input (solid line) and output (dashed line) amplitudes for the S2 wave together
with output error band. Right figure: components of the S2 output amplitude - subtracting term (ST), kernel
term (KT) and driving term (DT) together with corresponding error bands.
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Figure 4: Left figure: ππ input (solid line) and output (dashed line) amplitudes for the D0 wave together
with output error band. Right figure: components of the D0 output amplitude - kernel term (KT) and driving
term (DT) together with corresponding error bands.

Figure 5: Left figure: ππ input (solid line) and output (dashed line) amplitudes for the F1 wave together
with output error band. Right figure: components of the F1 output amplitude - subtracting term (ST), kernel
term (KT) and driving term (DT) together with corresponding error bands.
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Figure 6: Left figure: ππ input (solid line) and output (dashed line) amplitudes for the D2 wave together
with output error band. Right figure: components of the D2 output amplitude - kernel term (KT) and driving
term (DT) together with corresponding error bands.

√spole (MeV) |g|
f0(500)GKPY (457+14

−13)− i(279+11
−7 ) 3.59+0.11

−0.13 GeV
f0(500)Roy (445±25)− i(278+22

−18) 3.4±0.5 GeV
f0(980)GKPY (996±7)− i(25+10

−6 ) 2.3±0.2 GeV
f0(980)Roy (1003+5

−27)− i(21+10
−8 ) 2.5+0.2

−0.6 GeV
ρ(770)GKPY (763.7+1.7

−1.5)− i(73.2+1.0
−1.1) 6.01+0.04

−0.07
ρ(770)Roy (761+4

−3)− i(71.7+1.9
−2.3) 5.95+0.12

−0.08

Table 1: Poles and residues from Roy and GKPY equations

Apart of determination of those parameters, the analytical continuation of amplitudes allowed
also to calculate couplings of resonances to the ππ channel. The parameters of these poles and the
couplings are presented in Table 1. The couplings are given by residues of the poles:

g2 =−16π lim
s→spole

(s− spole) t`(s)(2`+1)/(2p)2` (2.2)

where p2 = s/4−m2
π . Analyzing results in Table 1 one can notice that central values of parameters

of resonances and couplings for the Roy and GKPY equations differ only slightly and all are within
the estimated errors. It confirms compatibility of the twice and once subtracted dispersion relations
used in the fits. The only sizable difference is in the errors of positions of poles and couplings.
Again, as it was for the values of averaged distances in the χ2, it is caused by much smaller
uncertainties of the GKPY equations than those of the Roy equations.
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Fig. 7 presents positions of the f0(500) poles taken from Particle Data Group Tables (PDGT)
2010 [4] and of the f0(500) pole found in presented analysis [3]. Also ranges of the mass and the
width estimated in PDGT 2010 and 2012 [5] for the f0(500) are shown for comparison. Striking
feature of this comparison is significant difference between parameters estimated in the new tables
and those in the previous ones. The mass of the f0(500) has changed from M = 400−1200 MeV
to 400−550 MeV and the width from Γ = 500−1000 MeV to 400−700 MeV.

Comparing estimations in those Particle Data Tables one can easily notice that apart of the
changes in the central values of the parameters, very significant changes are in the accuracy of
presented estimations. This is due to the recent dispersive analyzes of the ππ amplitudes which
incorporate either Roy or GKPY equations together with other theoretical constraints [1, 6]. In the
presented here analysis the greatest impact on reduction of the errors had GKPY equations.

The estimated values of parameters for the next light scalar-isoscalar f0(980) in PDGT 2012
are: M f0(980) = 990± 20 MeV and Γ f0(980) = 40− 100 MeV. The position of the pole found in
presented here analysis completely agrees with this estimation and can be found in Table 1.

3. Application of the GKPY in modification of existing amplitudes

Very interesting example of practical application of the method described above is modifi-
cation of the ππ amplitudes not fulfilling the crossing symmetry conditions [7]. The initial am-
plitudes constructed by fits only to experimental data in the range from the ππ threshold to about
1800 MeV [8], have been modified by adding the GKPY equations for the S and P waves. In results
these amplitudes below about 1000 MeV have change dramatically. For example the f0(500) pole
at 616.5− i554.0 MeV in the initial amplitude moved to 473.7− i297.8 MeV in the final one i.e.
to the position located about one standard deviation from the presented here. The threshold region
below mππ ≈ 600 MeV, excluded from analysis in the initial fit, has been very well described in
the final fit and the threshold parameters achieved the same values as found in [1]. Important is
to mention here that general mathematical structure of the parametrized initial amplitudes was not
changed after modifications of the model while the total χ2 decreased from almost 2.4 to 1.3.

4. Conclusions

In this short letter the basic points of new dispersive analysis of the ππ amplitudes have been
presented. The proposed here method of simultaneous analysis of theoretical constraints expressed
by set of dispersion relations and experimental data is very efficient, precise and easy to use. Ex-
ample of the importance of presented here dispersive analysis and its results can be seen in the new
edition of the particle data tables [5] where parameters of the two lightest scalar-isoscalar mesons
f0(500) and f0(980) have been changed (in the case of the f0(500) - very significantly). Worthy is
to note that even the name of the f0(500) has been changed (previously was f0(600)).

One has to note also that, as was already discussed in [1, 3], the presented here results agree
very well with those obtained by another, independent, group also using dispersive analysis and
working on scalar meson spectroscopy for many years [6].

In this letter the example of practical implementation of the GKPY equations in modification
of the ππ amplitudes fitted only to experimental data has been shortly presented.
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One can hope that proposed and presented here method will be widely used in various analyzes
to determine or to correct ππ amplitudes in many partial waves and in wide mππ range.
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Figure 7: Positions of the poles (black dots) related with the f0(500) (or σ ) cited in PDG’2010 [4], energy
Eσ =

√
sσ . Gray bands represent errors of mass and half of the width of the f0(500) in PDG’2010. The

rectangle on the left figure indicates the magnified area shown on the right drawing and corresponds to the
errors of mass and half of the width of the f0(500) in PDG’2012 [5]. The pole calculated in presented work
lies in the middle of the circle.
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