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1. Introduction

Glueballs are hypothetical strongly interacting particles. They are made of gluons, the gauge

bosons of Quantum Chromodynamics (QCD). The reason for the expectation of such fundamental

objects in the nature is the nonabelian structure of QCD. In this context the study of glueballs is

an important field of research in hadronic physics, relevant for the understanding of the structure

of some experimentally verified resonances and the phenomenological description of low-energy

QCD, see Ref. [1] and references therein.

Lattice QCD calculations predict a complete glueball spectrum [2], where the third lightest

glueball, which is investigated in this work, is a pseudoscalar state (JPC = 0−+) with a mass of

about 2.6 GeV. We study the decays of this pseudoscalar glueball, denoted as G̃ ≡ gg, into three

pseudoscalar mesons, G̃ → PPP, and a pseudoscalar and a scalar meson, G̃ → PS.

The effective chiral Lagrangian introduced in Refs. [3, 4, 5] contains the relevant tree-level ver-

tices necessary for evaluating the corresponding decay widths. Due to the assignment issue of the

bare scalar-isoscalar states, and their mixing which generates the resonances f0(1370), f0(1500)

and f0(1710), e.g. Refs. [6, 7, 8, 9], we consider the decays of the pseudoscalar glueball G̃ into

η and η ′, respectively and a scalar-isoscalar in more detail. Our numerical results are given as

branching ratios in order to present a parameter free prediction of our approach.

The PANDA experiment at the FAIR facility in Darmstadt is currently under construction and

will use an 1.5 GeV antiproton beam hitting a proton target at rest [10]. Therefore a centre of

mass energy higher than ∼2.5 GeV will be reached and the 2.6 GeV pseudoscalar glueball can be

directly produced as an intermediate state [4].

2. The chiral Lagrangian

The interaction between the pseudoscalar glueball G̃ ≡ gg with the quantum numbers JPC =

0−+ and the ordinary scalar and pseudoscalar mesons is described by the Lagrangian [3, 4, 11]:

L
int

G̃
= icG̃ΦG̃

(

detΦ−detΦ†
)

, (2.1)

where cG̃Φ is a coupling constant and Φ is a multiplet containing the ordinary scalar and pseu-

doscalar mesons. In this study we consider three flavours, N f = 3, thus cG̃Φ is dimensionless and

the multiplet Φ reads [9]:

Φ =
1√
2









(σN+a0
0)+i(ηN+π0)√

2
a+0 + iπ+ K+

S + iK+

a−0 + iπ− (σN−a0
0)+i(ηN−π0)√

2
K0

S + iK0

K−
S + iK− K̄0

S + iK̄0 σS + iηS









. (2.2)

As discussed in Refs. [3, 4, 5], let us briefly consider the symmetries of the effective La-

grangian (2.1). The pseudoscalar glueball G̃ is made of gluons and is therefore chirally invariant.

The multiplet Φ transforms under the chiral symmetry as Φ → ULΦU
†
R , where UL(R) = e

−iθ a
L(R)t

a

is an element of U(3)L(R). Performing these transformations on the determinant of Φ it is easy to

prove that this object is invariant under SU(3)L × SU(3)R, but not under the axial UA(1) transfor-

mation:

detΦ → detUAΦUA = e
−iθ 0

A

√
2N f detΦ 6= detΦ . (2.3)
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This is in agreement with the chiral anomaly. Consequently the effective Lagrangian (2.1) pos-

sesses only the SU(3)L ×SU(3)R symmetry. Further essential symmetries of the strong interacting

matter are the parity P and charge conjugation C . The pseudoscalar glueball and the multiplet Φ

transform under parity as

G̃(t,~x)→−G̃(t,−~x) , Φ(t,~x)→ Φ†(t,−~x) , (2.4)

and under charge conjugation as

G̃ → G̃ , Φ → ΦT . (2.5)

Performing these discrete transformations P and C on the effective Lagrangian (2.1) leave it

unchanged. In conclusion, one can say that the symmetries of the effective Lagrangian (2.1) are in

agreement with the symmetries of the QCD Lagrangian.

Let us now consider the assignment of the ordinary mesonic d.o.f. in Eq. (2.1) or (2.2).

In the pseudoscalar sector we assign the fields ~π and K to the physical pion isotriplet and the

kaon isodoublet [12]. The bare quark-antiquark fields ηN ≡ (ūu+ d̄d)/
√

2 and ηS ≡ s̄s are the

nonstrange and strange mixing contributions of the physical states η and η ′ [9]. In the effective

Lagrangian (2.1) there exist a mixing between the bare pseudoscalar glueball G̃ and the both bare

fields ηN and ηS, but, due to the large mass difference between the pseudoscalar glueball and

the pseudoscalar quark-antiquark fields, it turns out that its mixing is very small and is therefore

negligible. In the scalar sector the field ~a0 corresponds to the physical isotriplet state a0(1450)

and the scalar kaon field KS to the physical isodoublet state K⋆
0 (1430) [12]. The field σN ≡ (ūu+

d̄d)/
√

2 is the bare nonstrange isoscalar field and it corresponds to the resonance f0(1370) [9, 13].

The field σS ≡ s̄s is the bare strange isoscalar field and the debate about its assignment to a physical

state is still ongoing; in a first approximation it can be assigned to the resonance f0(1710) [9] or

f0(1500) [13]. (Scalars below 1 GeV are predominantly tetraquarks or mesonic molecular states,

see Refs. [14, 15] and references therein, and are not considered here). In order to properly take

into account mixing effects in the scalar-isoscalar sector, we have also used the results of Refs.

[7, 13]. The mixing takes the form:







f0(1370)

f0(1500)

f0(1710)






= B ·







σN ≡ n̄n = (ūu+ d̄d)/
√

2

G ≡ gg

σS ≡ s̄s






, (2.6)

where B is an orthogonal (3 × 3) matrix and G ≡ gg a scalar glueball field which is absent in this

study.

In accordance with the spontaneous breaking of the chiral symmetry we shift the scalar-

isoscalar fields by their vacuum expectation values σN → σN + φN and σS → σS + φS, where φN

and φS are the corresponding chiral condensates. In order to be consistent with the full effective

chiral Lagrangian of the extended Linear Sigma Model [9, 16, 17] we have to consider the shift of

the axial-vector fields and thus to redefine the wave function of the pseudoscalar fields

~π → Zπ~π , K → ZKK , ηN,S → ZηN,S
ηN,S , (2.7)

where Zi are the renormalization constants of the corresponding wave functions [9].
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3. Results

From the effective chiral Lagrangian (2.1) with the unknown coupling constant cG̃Φ we calcu-

lated the two- and three-body decays of the pseudoscalar glueball G̃. We present the decay widths

as branching ratios in order to obtain parameter free results as predictions for the future PANDA

experiment at the FAIR facility. For our calculations we fixed the mass of the pseudoscalar glueball

to MG̃ = 2.6 GeV. This value is obtained by studying of the pure Yang-Mills sector on lattice QCD

[2]. Due to the mixing in the scalar-isoscalar channel we evaluated explicitly the decays of the pseu-

doscalar glueball G̃ into η and η ′ and one of the scalar-isoscalar resonances f0(1370), f0(1500) or

f0(1710). We used for the transformation matrix B in Eq. (2.6) the solution (1) and (2) of Ref. [7]:

B1 =







0.86 0.45 0.24

−0.45 0.89 −0.06

−0.24 −0.06 0.97






, (3.1)

B2 =







0.81 0.54 0.19

−0.49 0.49 0.72

0.30 −0.68 0.67






(3.2)

and the solution of Ref. [13]:

B3 =







0.78 −0.36 0.51

−0.54 0.03 0.84

0.32 0.93 0.18






. (3.3)

In the solution 1 of Ref. [7] the resonance f0(1370) is predominantly n̄n state, the resonance

f0(1500) is predominantly a glueball, and f0(1710) is predominantly a strange s̄s state. In the

solution 2 of Ref. [7] and in the solution of Ref. [13] the resonance f0(1370) is still predominantly

nonstrange n̄n state, but f0(1710) is now predominantly a glueball, and f0(1500) predominantly a

strange s̄s state.

In Table 1 we present our results for the decay channels G̃ → PPP and in Table 2 and 3 we

show the results for the decay channels G̃ → PS, whereby in Table 3 the bare scalar-isoscalar states

are substituted by the physical ones [3, 4, 5]. Γtot
G̃

= ΓG̃→PPP +ΓG̃→PS is the total decay width. In

Table 2 the decays G̃ → ησS and G̃ → η ′σS correspond to the assignment σS ≡ f0(1710) and to

σS ≡ f0(1500) (values in the brackets). Finally, in Table 3 we present results in the scalar-isoscalar

sector where the mixing matrices (3.1), (3.2), and (3.3) are taken into account.

The largest contribution to the total decay width is given by the following decay channels:

KKπ , which contributes to almost 50%, as well as ηππ and η ′ππ , where each one contributes of

about 10%. The substitution of the bare scalar-isoscalar states through the resonances f0(1370),

f0(1500) and f0(1710) did not affect the several decay channels. The contribution of the pseu-

doscalar glueball decay into the scalars-isoscalars is still about 5% independently on the mixing

scenario. A further interesting outcome of our approach is that the decay of the pseudoscalar glue-

ball into three pions, G̃ → πππ , is not allowed.
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Quantity Value

ΓG̃→KKη/Γtot
G̃

0.049

ΓG̃→KKη ′/Γtot
G̃

0.019

ΓG̃→ηηη/Γtot
G̃

0.016

ΓG̃→ηηη ′/Γtot
G̃

0.0017

ΓG̃→ηη ′η ′/Γtot
G̃

0.00013

ΓG̃→KKπ/Γtot
G̃

0.47

ΓG̃→ηππ/Γtot
G̃

0.16

ΓG̃→η ′ππ/Γtot
G̃

0.095

Table 1: Branching ratios for the decay of the pseudoscalar glueball with the mass of MG̃ = 2.6 GeV into

three pseudoscalar mesons: G̃ → PPP.

Quantity Value

ΓG̃→KKS
/Γtot

G̃
0.060

ΓG̃→πa0
/Γtot

G̃
0.083

ΓG̃→ησN
/Γtot

G̃
0.0000026

ΓG̃→η ′σN
/Γtot

G̃
0.039

ΓG̃→ησS
/Γtot

G̃
0.012 (0.015)

ΓG̃→η ′σS
/Γtot

G̃
0 (0.0082)

Table 2: Branching ratios for the decay of the pseudoscalar glueball with the mass of MG̃ = 2.6 GeV into a

pseudoscalar and a scalar meson: G̃ → PS. In the last two rows σS is assigned to f0(1710) or to f0(1500)

(values in the brackets)

Quantity Sol. 1 of Ref [7] Sol. 2 of Ref [7] Sol. of Ref [13]

ΓG̃→η f0(1370)/Γtot
G̃

0.00093 0.00058 0.0044

ΓG̃→η f0(1500)/Γtot
G̃

0.000046 0.0082 0.011

ΓG̃→η f0(1710)/Γtot
G̃

0.011 0.0053 0.00037

ΓG̃→η ′ f0(1370)/Γtot
G̃

0.038 0.033 0.043

ΓG̃→η ′ f0(1500)/Γtot
G̃

0.0062 0.00020 0.00013

ΓG̃→η ′ f0(1710)/Γtot
G̃

0 0 0

Table 3: Branching ratios for the decays of the pseudoscalar glueball G̃ into η and η ′, respectively and one

of the scalar-isoscalar states: f0(1370), f0(1500) and f0(1710) by using three different mixing scenarios of

these scalar-isoscalar states [7, 13]. The mass of the pseudoscalar glueball is MG̃ = 2.6 GeV.

4. Conclusions

We have presented a chirally invariant three-flavour effective Lagrangian with scalar and pseu-

doscalar quark-antiquark states and a pseudoscalar glueball. We have calculated two- and three-

body decay processes of the pseudoscalar glueball with a mass of 2.6 GeV, as evaluated by lattice

QCD. It turns out that our results depend only slightly on the scalar-isoscalar mixing. We predict

that the decay channel G̃ → KKπ is the largest one and G̃ → ηππ as well as G̃ → η ′ππ are the

next dominant ones [3, 4]. Moreover, the decay channel G̃ → πππ is not allowed.
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The results presented in this work can be tested in the upcoming PANDA experiment at the FAIR

facility [10].
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