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stringlike confinement and one-gluon-exchange term, thus leading to well-defined results even
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1. Introduction

The large-N QCD approach is based on the replacement of the usual color group SU(3) by the
group SU(N) with a large arbitrary value N, allowing a perturbative expansion of the theory in 1/N
[1]. Taking into account the numerous successes obtained within this framework [2], it seems that
the real QCD (N = 3) is not too different from the idealized world with large N. Current lattice
calculations also strongly support this idea (see e.g. the review [3]).

In the original proposal by ’t Hooft [1], denoted here QCDF, the quarks are in the fundamental
representation of SU(N) and the strong coupling constant αS is such that the quantity α0 = αS N ∼
O(N0). In this framework, a baryon is made of N quarks in the totally antisymmetric color singlet
and the number of flavors remains finite while N →∞. It has been shown by diagrammatic methods
that the baryon mass thus scales as N at the dominant order [4, 5].

Actually, the generalization of QCD to arbitrary numbers of colors is not unique, the main
criterion being that the considered SU(N) gauge theory has to be equivalent to QCD when N = 3.
For instance, a limit has been studied in which the quarks are in the two index antisymmetric
representation of SU(N), which is equivalent to the fundamental representation for N = 3. Denoted
here QCDAS, that limit interestingly leads to a theory equivalent to N = 1 supersymmetric Yang-
Mills when one light quark is present, as shown in [6]. In this framework, a baryon is made of
N(N − 1)/2 quarks in the totally antisymmetric color singlet [7] and its mass is expected to scale
as N2 at the dominant order [8, 9]. In the same way, the quarks can also be considered in the two
index symmetric representation of SU(N) [7]. Denoted here QCDsym, this model is not equivalent
to QCDF for N = 3, but it is equivalent to some extent to QCDAS when N → ∞ [6]. In this case,
a baryon is made of N(N + 1)/2 quarks in the totally antisymmetric color singlet and its mass
is expected to scale as N2 at the dominant order [7]. Taking quarks in the two index symmetric
representation is interesting since QCD-like theories with fermions in higher representations may
be used in the so-called technicolor models [10].

In this work, our purpose is to compute the N-behavior of the mass for light baryons in the
framework of a constituent quark model first suggested by Witten [4] (Hamiltonian with relativistic
kinetic energy, stringlike confinement, and one-gluon-exchange term). Two spin-dependent poten-
tials are also considered: the color magnetic interaction stemming from one-gluon exchanges [11]
(see [12] for a review) and the chiral boson exchange interaction [13]. We focus only on the ground
states containing solely u and d quarks. We have analytically proved that the static properties of
light baryons scale as expected [14, 15]. All approximate solutions for the many-body Hamiltoni-
ans considered have been obtained using the auxiliary field method (AFM) [16, 17, 18, 19].

2. The auxiliary field method

The AFM allows to treat Hamiltonians with the following form

H =
M

∑
i=1

√
ppp2

i +m2 +
M

∑
i=1

U(|rrri−RRR|)+
M

∑
i< j=1

V (|rrri− rrr j|) (2.1)

where ∑
M
i=1 pppi = 000 and RRR is the center of mass coordinate [16]. U(x) is a one-body potential and

V (x) is a two-body potential. The method relies on the knowledge of the analytic solution of a
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particular M-body Hamiltonian. In practice, only the following one is usable

Hho =
1

2m

M

∑
i=1

ppp2
i + k

M

∑
i=1

(rrri−RRR)2 +ρ

M

∑
i< j=1

(rrri− rrr j)2. (2.2)

Its eigenvalues are given by

Eho =

√
2
m

(k +Mρ) Q (2.3)

with

Q =
M−1

∑
i=1

(2ni + li)+
3
2
(M−1). (2.4)

It can then be shown that the AFM solution of the Hamiltonian (2.1) is obtained by solving the
following set of equations [16, 17, 18, 19]

EAFM = M T (p0)+MU
( r0

M

)
+CM V

(
r0√
CM

)
p0 =

Q
r0

M p0T ′(p0) = r0U ′
( r0

M

)
+
√

CM r0V ′
(

r0√
CM

) (2.5)

with T (p0) =
√

p2
0 +m2 and CM = M(M−1)

2 . The global quantum number Q is given by (2.4). The
AFM eigenstates are written as the product of harmonic oscillator states for each internal variables
xxxi

|φ〉=
M−1

∏
i=1

|ni, li,λi,xxxi〉 with λi =

√
i

i+1
M Q

1
r0

. (2.6)

These states have a good parity. It is possible to fix the total angular momentum and the symmetry,
but this task can be very complicated.

3. Light baryon Masses

The spin-independent Hamiltonian considered here for nq quarks was first proposed by Witten
[4]. In natural units, h̄ = c = 1, it is given by

HB =
nq

∑
i=1

√
ppp2

i +
Cq

C
σ

nq

∑
i=1

|rrri−RRR|+Fqq
α0

N

nq

∑
i< j=1

1∣∣rrri− rrr j
∣∣ (3.1)

The kinematic term is written under the spinless Salpeter form with a vanishing mass, mq = 0, for
the quarks, since only u and d flavors are considered here. The confinement is inspired from the
QCD string model in which each quark generates a straight flux tube whose tension is proportional
to its quadratic color Casimir operator Cq, with the fundamental string tension σ ∼ O(1). Then,
the flux tubes have to meet in one or several points such that the total energy contained in those
flux tubes is minimal. When the number of quarks tends towards infinity, an unique junction point
identified to the center of mass RRR is a good approximation [14]. The short-range part of the potential
is ensured by the one-gluon exchange interaction whose color dependence is given by the factor
Fqq = 〈λλλ c

q ·λλλ
c
q/4〉.
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Table 1: Color parameters for various large-N limits.

QCDF QCDAS QCDSym

nq N
N(N−1)

2
N(N+1)

2

Cq/C 1 2 N−2
N−1 2 N+2

N+1

Fqq −N+1
2N − 2

N − 2
N

Such a Hamiltonian can be solved by the AFM. We find [14]

r0 =

√√√√ C
Cq σ

(
nq Q+

(
nq

2

)3/2

Fqq
α0

N

)
, (3.2)

and upper bounds are given by

MB = 2

√√√√Cq

C
σ

(
nq Q+

(
nq

2

)3/2

Fqq
α0

N

)
. (3.3)

The various parameters appearing in these formulae are given in Table 1. The ground state masses
for the three large-N limits considered are plotted on Fig 1. It appears that the masses scale as O(nq)
up to subleading corrections. It can be also shown that the baryon radius and the contribution of
strange quarks to the mass scale as O(1) [14]. Moreover, large-N baryons lie on Regge trajectories
as in the real QCD world.
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3
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Figure 1: Baryon ground state masses per quark in
√

σ unit for three large-N limits, with α0 = 0. In order
to guide the eyes, N is considered as a continuous variable. Masses are slightly lowered when α0 6= 0.
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4. Spin contributions

The spin contributions for light baryons can be estimated by the quantity δS = m∆ −mN . In
the real world, δS ≈ 0.3mN . These effects are then quite large. Nevertheless, it is expected that
δS ∼ 1/nq in the large-N limits. So, the contributions of spin-dependent parts of the Hamiltonian
will be computed with the perturbation theory. Generally, it is considered that δS ∝ 1/m2

q, but this
is a too crude nonrelativistic approximation. In this work, we use a better ansatz and replace mq by

Eq = 〈
√

ppp2 +m2
q〉, in which the mean value is computed with the state considered [12]. It can be

shown that Eq ≈
√

p2
0 +m2

q, with p0 given by (2.5).
The baryon wavefunction is a color singlet completely antisymmetrical. The ground state is

given by |GS〉 = ∏
M−1
i=1 |0,0,λi,xxxi〉 which is completely symmetrical. As we consider only states

with the same value for the spin S and the isospin I, the spin-isospin part of the wavefunction has
the following symmetry

[z] = · · ·︸ ︷︷ ︸
nq−2S

2 columns

2S columns︷ ︸︸ ︷
· · · . (4.1)

One can check that the SU(2) dimension of this representation is 2S+1, while for the permutation
group Snq we have

d[Snq ][z] =
2S +1
nq +1

(
nq +1

(nq−2S)/2

)
. (4.2)

The spin-spin interaction coming from the one-gluon exchange (OGE) interaction is well
known [11, 12]. The form retained is

W OGE
i j =− A

E2
q

α0

N
δ

3(rrri j)
λλλ

c
i ·λλλ

c
j

4
sssi · sss j, (4.3)

with A = 8π/3 and Eq ≈ p0 since mq = 0. λλλ
c
i ·λλλ

c
j/4 is the color exchange operator and sssi · sss j is the

spin exchange operator. As this potential is treated as a perturbation, the delta distribution gives a
finite result.

Using the AFM solution given in the previous section, it is possible to compute the contribution
of the spin-spin interaction W OGE = ∑

nq
i< j=1W OGE

i j for the various large-N limits. When N →∞, we
obtain

〈W OGE
F 〉 =

α0A
2π3/2

√
σ

6(12−
√

2α0)

[
S(S +1)

N
− 3

4

]
+O

(
1
N

)
, (4.4)

〈W OGE
AS 〉 = 〈W OGE

Sym 〉

=
α0A
π3/2

√
σ

6(6−
√

2α0)

[
S(S +1)

N2/2
− 3

4

]
+O

(
1
N

)
. (4.5)

For each limit, we see that δS ∼ SSS2/nq, as expected. But, it appears other terms which are S-
independent. These particulars contributions are unavoidable in the framework of a potential
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model. They are not really disturbing to fit the parameters of the mass formulae since they can
be absorbed in the various terms of the usual large-N expansions, such as

MB = c0 N + c1 + c2
SSS2

N
+ . . . (4.6)

The chiral boson exchange (CBE) mechanism, also known as Goldstone boson exchange
mechanism, has been proposed as an alternative to the one-gluon exchange process [13]. Based on
the approximate chiral symmetry of QCD, it can yield very good baryon spectra. As our purpose is
only to check the N-dependence of this interaction, we will consider the simplest representation of
the most important component of the potential that is mediated by the octet of pseudoscalar bosons.
In the SU(3)F invariant limit, we take

W CBE
i j =

B
E2

q
g2V CBE(rrri j)

λλλ
f
i ·λλλ

f
j

4
sssi · sss j, (4.7)

with B = 1/(3π) and Eq ≈ p0. The coupling constant is given by g = mu
gA

fπ

, and the radial part has

the following form

V CBE(xxx) = Λ
2 e−Λx

x
−4πδ

3(xxx), (4.8)

where Λ ∼ O(1) is the degenerate pseudoscalar meson mass. λλλ
f
i · λλλ

f
j /4 is the flavor exchange

operator. In our model, mu ∼ O(1) is the effective u mass. Strong indications exist, indicating that
the vector axial coupling constant gA ∼ O(1) [20, 21, 22]. Moreover, we take [21, 23]

fπ(N) =
√

nq

3
fπ(3) with fπ(3)∼ O(1), (4.9)

where fπ(3) = 131 MeV is the pion decay constant. Note that for this potential, no one-gluon
exchange is considered (α0 = 0).

As in the previous section, it is possible to compute the contribution of the spin-spin interaction
W CBE = ∑

nq
i< j=1W CBE

i j for the various large-N limits. Denoting by W (Λ,λ ) the mean value of V CBE

for an oscillator state with size λ , we obtain for N → ∞,

〈W CBE
F 〉 =

5g2
AB

8 f 2
π (3)

∣∣∣W (Λ,
√

σ/2)
∣∣∣[S(S +1)

N
− 9

20
N
]
+O(1),

〈W CBE
AS 〉 = 〈W CBE

Sym 〉

=
5g2

AB
8 f 2

π (3)

∣∣W (Λ,
√

σ)
∣∣[S(S +1)

N2/2
− 9

20
N2

2

]
+O(N).

For each limit, we see again that δS ∼ SSS2/nq for N → ∞, and that terms appear which are S-
independent. As in the previous case, they are not really disturbing to fit the parameters of the mass
formulae.

5. Concluding remarks

Even if approximate analytical results are computed in this work, it has been shown in [14]
that the N-behavior of the solutions are correct when N → ∞. Within our model, the results are
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the same for the QCDF and QCDAS schemes for N = 3, while they are the same for the QCDAS

and QCDSym schemes for N → ∞. This is in agreement with the results in [24], where it has been
shown that predictions for baryon mass relations obtained with QCDF and QCDAS limits are both
in agreement with experimental data.

We focus only on the ground states S = I containing u and d quarks. It is then not possible
to disentangle the contributions coming from spin and isospin. However, it could be interesting
to study in future works other states with S 6= I, since isospin-dependent operators could play an
important role for the masses of some multiplets [25].

The main result of this work is that the S-dependent mass term for light baryons is proportional
to SSS2/nq when N → ∞, as already shown from diagrammatic methods, mostly valid for heavy
quarks. It is obtained for both the one-gluon exchange mechanism and the chiral boson exchange
potential, despite their different origins. These interactions yield also S-independent contributions
which behave very differently. From our point of view, it is not possible to prefer one interaction
with respect to the other on the basis of our results. For instance, the S-independent contributions
can be absorbed in various terms of usual baryon mass formulae. We think that our work validates
our approach to study baryons in various large-N limits. Since approximate analytical baryon
eigenfunctions are available with our method, a lot of observables can a priori be computed.

References

[1] G. ’t Hooft, Nucl. Phys. B 72, 461 (1974).

[2] A. V. Manohar, hep-ph/9802419, and references therein.

[3] M. Teper, PoS LATTICE2008, 022 (2008) [arXiv:0812.0085], and references therein.

[4] E. Witten, Nucl. Phys. B 160, 57 (1979).

[5] M. A. Luty and J. March-Russell, Nucl. Phys. B 426, 71 (1994); M. A. Luty, Phys. Rev. D 51, 2322
(1995).

[6] A. Armoni, M. Shifman, and G. Veneziano, Nucl. Phys. B 667, 170 (2003); Phys. Rev. Lett. 91,
191601 (2003).

[7] S. Bolognesi, Phys. Rev. D 75, 065030 (2007).

[8] A. Cherman and T. D Cohen, JHEP12, 035 (2006).

[9] T. D. Cohen, D. L. Shafer, and R. F. Lebed, Phys. Rev. D 81, 036006 (2010).

[10] J. R. Andersen et al., Eur. Phys. J. Plus 126, 81 (2011).

[11] A. De Rújula, H. Georgi, and S. L. Glashow, Phys. Rev. D 12, 147 (1975).

[12] W. Lucha, F. F. Schöberl, and D. Gromes, Phys. Rep. 200, 127 (1991).

[13] L. Ya. Glozman and D. O. Riska, Phys. Rep. 268, 263 (1996).

[14] F. Buisseret and C. Semay, Phys. Rev. D 82, 056008 (2010).

[15] F. Buisseret, N. Matagne, and C. Semay, Phys. Rev. D 85, 036010 (2012).

[16] B. Silvestre-Brac, C. Semay, F. Buisseret, and F. Brau, J. Math. Phys. 51, 032104 (2010).

[17] B. Silvestre-Brac and C. Semay, J. Math. Phys. 52, 052107 (2011).

7



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
1
2
5

Light baryons in different large-N limits Claude Semay

[18] C. Semay, F. Buisseret, and B. Silvestre-Brac, J. Phys. Math. 3, P111101 (2011).

[19] B. Silvestre-Brac, C. Semay, and F. Buisseret, J. Phys. Math. 4, P120601 (2012).

[20] Y. Hidaka, T. Kojo, L. McLerran, and R. D. Pisarski, Nucl. Phys. A 852, 155 (2011).

[21] W. Broniowski, M. Lutz, and A. Steiner, Phys. Rev. Lett. 71, 1787 (1993).

[22] S. Weinberg, Phys. Rev. Lett. 65, 1181 (1990).

[23] F. Sannino and J. Schechter, Phys. Rev. D 76, 014014 (2007).

[24] A. Cherman, T. D. Cohen, and R. F. Lebed, Phys. Rev. D 80, 036002 (2009).

[25] N. Matagne and Fl. Stancu, Nucl. Phys. A 811, 291 (2008).

8


