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In the first part of this talk, we discuss the calculation af tlorrelation lengths of confining as
well as of nonperturbative-nonconfining stochastic baskgd Yang—Mills fields. This calcu-
lation was done in Ref. [1] by means of a direct analytic gatkgral evaluation of the Green
functions of the so-called one- and two-gluon gluelumpsmirically, the obtained correlation
lengths turn out to be in a good agreement with the result®sponding to the masses of these
objects found on the lattice. They also agree with the ealalytic results obtained within the
Hamiltonian formalism. In the second part of the talk, wecdiss the recent calculation of the
guark condensate for various heavy flavors. This calculatias done in Ref. [2] by means of the
effective-action formalism combined with the most genpeaalametrization of the quark Wilson
loop provided by the stochastic vacuum model. In particularshow that the conventional for-
mula for the heavy-quark condensate becomes inapplicalttec-quark case, where it acquires
the corrections that can reach up to 50%. This conclusioeesgwith the one drawn in Ref. [3],
where the heavy-quark condensate was calculated by othbti@monperturbative methods.
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1. Introduction

This talk addresses two fundamentally important issuesoofperturbative QCD. The first
issue is the theoretical foundations of the stochastic inaidthe QCD vacuum [1], the second
issue is the calculation of the quark condensate in termiseofiuon condensate for various heavy
flavors [2]. We find it possible to combine these two subjeats a single talk, since we use for
their study one and the same approach based on the analgtitatians of path integrals with the
minimal-area surfaces. The two subjects also have a comtading point, which is the formula
expressing the Wilson loop

S
(W(C)) = (W(z,]) = <trg7 exp(ig/0 dTTaA";‘,'zy>> (1.1)
through the two-point correlation function of gluonic fiedttengths [4]:
2 .
(W(C)) ~tr exp[—%/z | (C)daw(x)/z L doy,(X) <Fﬁv(X)Ta¢xx’F)\bp(X,)qu)x’x>:|- (1.2)

Here,Ff, = 0uA; — 0 A% +9 fabCA?,AS is the Yang-Mills field-strength tensor, afid’s are the
generators of the group SNY) in the fundamental representation, obeying the comnuutatla-
tion [T3, TP = if3P°T¢, The Wilson loop is unambiguously defined by the minimakasarface
Zmin(C) bounded by the contol, which is parametrized by the vector-functign(t). Further-
more, Oy = & exp|ig [y dz,A%(2)T?] denotes a phase factor along the straight-line path inter-
connecting the pointg andx, and the averagé..) is taken with respect to the Yang—Mills action
%1 Ik d4x(Fj‘V)2. The most general parametrization of the two-point cofi@tafunction, which is
provided by the stochastic vacuum model [4, 5], containsrwually independent tensor struc-
tures, namely

tr (R, (O T2FR,(0)T") =

1

As can be checked upon the substitution of Eq. (1.3) into EQ)(the functiorD(x) yields con-
finement, while the functio;(x) exists already in massive QED, yielding only Yukawa-type
interactions. According to the lattice data [6, 7], bothdtions D(x) andD;(x) fall off exponen-
tially, and their correlation lengths are equal to each otéhin the errors of the corresponding
lattice calculations. The equality of the two correlatiendgths has nevertheless been questioned by
the phenomenological studies done in Refs. [8, 9]. Thet®sfithese studies were indicating that
the correlation length of the functidb(x) could be smaller than that of the functién (x). These
indications were confirmed by the subsequent studies peedwithin the methods of potential
non-relativistic QCD [10] and the background perturbativeory [11]. There, the correlation func-
tion (1.3) has been expressed via the Green functions obticaled gluelumps. The latter are the
bound states of gluons in the field of a hypothetical infigitedéavy source transforming under the
adjoint representation. In particular, it has been fourad the correlation lengths of the functions
D(x) andD1(x) are given by the inverse masses of, respectively, two- aregron gluelumps,
which are known from the lattice data (cf. Ref. [12]). HeniceSection 2, we summarize the re-
sults of Ref. [1], where the analytic calculation of the dlueps’ Green functions has been shown
to provide two different vacuum correlation lengths.
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In Section 3, we discuss the calculation of the heavy-quarkdensate for various heavy fla-
vors, which was done in Ref. [2]. To this end, we substituteWilson loop in the form given by
Egs. (1.2) and (1.3) into the following one-loop effectivdian [13, 14, 15]:

° d_seszs
s

riaz) =2

l 1 6
/QZH/QW e 3 dr(3Z+ 70t exp{ 2/ drwptpvéau @ W[z))).  (1.4)

Here, P and A stand, respectively, for the periodic and the antiperidmbandary conditions, so
that [, = j’zy 0 Ja= jwy g, (0) andM is the current quark mass. The corresponding

expression for the heavy quark condensate régqs = v dM (T[AS]), whereV is the Euclidean
four-volume occupied by the system. Equation (1.4) alse tise fact that the produdtg, T4,
which enters the quark spin term in the world-line actiom ba recovered by means of the area-
derivative operator&% acting on the Wilson loop [16]. By virtue of this fact, all tlgauge-
field dependence of the effective action becomes encodédukikMilson loop (1.1). Furthermore,
since the Wilson loop is a color-neutral object, which is pbetely determined by the geometric
characteristics of its contour, the problem at issue resltmé¢he calculation of the effective action
in an auxiliaryAbeliangauge field [14].

For the mean sizes of the Euclidean trajectory of a heavykgsiamaller than the vacuum
correlation length, one can use constif} as a leading approximation. By virtue of Eq. (1.2),
this results in the following expression for the nonperatide contribution to a small-sized Wilson
loop (1.1) (cf. Ref. [4]):

(W(C)) =Nc-e R Shn, (1.5)

Here, <(gFﬁv)2> is the gluon condensate, a8y is the area of the surfacE,(C). As was
shown in Ref. [14], Eq. (1.5), once substituted into Eq. X 1cdrrectly reproduces the heavy-quark
condensate obtained within the method of the SVZ sum rulgs [1

((9F%)?)
48™M
In Ref. [2] and in Section 3 below, we address the accuracygo{ E6) for various heavy flavors.

To this end, we calculate the effective action (1.4) by udimgthe Wilson loop the following
general expression resulting from Eqgs. (1.2) and (1.3):

. <(9Fﬁv)2> — x|/ Ty
W(C)) _Nc.exp[_TNc / LR /z o dawe G

(YYP)svz=— (1.6)

Here Ty is the correlation length of the functidn(x), and we have for simplicity assumed the
purely exponential parametrization of this function atdiitances. Furthermore, the contribution
of the functionD1(x) to Eq. (1.7) has been disregarded. The reason for that isde\by the
corresponding explicit calculation done in Ref. [2]. Theaulation shows that, for the same
exponential parametrization of the functiba(x), the contributions of this function to the effective
action cancel out.

Finally, in Section 4, we provide a summary of the result®reg in this talk.
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2. Vacuum correlation lengths from the gluelump Green funcions

In the Yang—Mills theory, gluelumps define the correlatiendths of the field-strengths’ two-
point function in the same way as, in full QCD, physicallystixig heavy-light mesons define the
correlation length of a nonlocal quark condensapéx)®d,, (X)) (cf. Refs. [9, 10, 11]). Unlike
the case of the fundamental representation, the adjoireseptation allows for two different types
of heavy-light objects — those with a single gluon, called-@tuon gluelumps, and those with two
gluons, called two-gluon gluelumps. While the first casé@mslar to the above-mentioned nonlocal
guark condensate, the second case is conceptually diffesiece it corresponds to two gluons
connected together with the heavy source by three stringjseifundamental representation. To
find the correlation lengths of the functiobBgx) andD1(x), we use the relations of these functions
to the Green functions of, respectively, two- and one-glgluelumps. These relations, found in

Ref. [11], read
dx -

We consider first the Green function of a one-gluon gluelump,

w0 X s 72
G1gI(X) :/o ds,/0 @z“exp<—/0 Z“d)\ —asmn), (2.1)

where the minimal surface of the ar&aj, is swept out by the string connecting a gluon to the
adjointly charged source. Accordingly, the string tensiis also the one in the adjoint repre-
sentation. Furthermore, the source of the gauge field isva$uo be static, which means that
it evolves only along they-axis, i.e. x = (0,L). The path integral entering Eq. (2.1) has been
calculated in Ref. [1] by majoratingmin = fOLdr |z(1)| through the Cauchy—Schwarz inequality:

Shin < \/Lfg‘drzz. This way, the said path integral has been reduced to thai bemonic os-
cillator of a variable frequency. The resulting Green fiont Gy gi(X) ~ \/%e‘@w, yields the

D(x) O Gagi(x), Di(x)0O

mass of the one-gluon gluelump equaki6o ~ 1.6 GeV. Here, the string tension in the adjoint
representation has been evaluated via the so-called Gasialing hypothesis [18]. This hypothe-
sis, supported both by lattice simulations [19] and analstiidies [5, 20], suggests proportionality
of the string tension in a given representation of the grougNg) to the quadratic Casimir oper-
ator of that representation. For the adjoint represemtatiocthe group SU(3), it yielder = %O-f,
where the standard phenomenological value of the stringjderin the fundamental representa-
tion is gy = (440MeV)2. We observe that the above-quoted value of the mass of thglooe
gluelump turns out to be close to the value of 1.5 GeV, whick wlatained in Ref. [11] from the
Schrédinger equation with the linear potential, as wellcathé value of 1.4 GeV obtained on the
lattice in Ref. [12].

In the case of a two-gluon gluelump, the minimal surface fry two gluons and the static
source has a triangular cross-section. The area of thiauidan be parametrized Sgin =
f(',‘dr(]z\ +|z] + |z — Z|), wherez and z are the spatial coordinates of the gluons. To majo-
rate this area-functional, a yet another form of the CauSlaitwarz inequality is usefulSyi, <
\/§fOL dr\/z2 + 22+ (z—2)2. One can further majorate this expression in the same wayweesi
done above for the one-gluon gluelump. Then the resultity ipgegral forG, ¢ (x) represents two
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mutually interacting harmonic oscillators of variableguencies. To calculate this path integral,
one needs to perform a simultaneous diagonalization of ithetik and the potential energies of
the two gluons, which is possible owing to the known fact tinad positively definite quadratic
forms can be diagonalized simultaneously. As a result, omeéea at the path integral of two non-
interacting harmonic oscillators, so that the path integnacan be done analytically. Referring
the reader for details to Ref. [1], we quote here the resuhtirass of the two-gluon gluelump. It
reads §/or ~ 2.6GeV, which is very close to the value of 2.56 GeV found in Ret] via the
Hamiltonian approach.

3. Quark condensate for various heavy flavors

In order to calculate the effective action (1.4) with the 8 loop (1.7), we choose the surface
elementay, in the form of an oriented, infinitely thin triangle built upthe position vectog,, (1)
and the differential elementz, = z,dt, namelydoy,(2) = 3(zu2, — ,2,)d1. Then the Wilson
loop can be represented in the form of a functional integvat an auxiliary antisymmetric-tensor
field Byy:

NcTg

W(C) =N [ [I'I 7Buve O eblidrBn@at  (31)
U<v

j‘d4xB“V(—52+T92)5/ZBW]
One recognizes in the latter exponential factor a Wilsom loarresponding to the Abelian gauge
field Ay (X) = 3x,Byv(X). For this reason, one can write down for the effective actibd) a
closed-form expression containing two strength tensgys= d, A, — dyA, of the fieldA,,. This
expression reads

a dse M?s 4
(riA2]) = 2NC/ /d XFuy (X) F(E) Fuu(¥) ) (3.2)
0 B
where theB-average is defined by the functional integral in Eq. (3.0 B() is the following
formfactor [15]: F(&) = f(‘;){ 1£(&). In this formula, f(§) = [y due"®~Y%, and& = sD?,
whereD,, = d,, — A, is the covariant derivative corresponding to the auxiliabelian fieldAy,.

Representing further the formfactb(£ ) in an equivalent form,

F(f)— / /d4 ( 11 mE >e‘4u<i2u>s+yuDu7

and using the equalityFW(x)eVu PuF,u(X)e = (F“V(O)Fw(y»g, we see that thB-average yields
expressions proportional togF3,)?)e~M/T. This fact allows us to represent the quark condensate
in the form of a product of the gluon condensate and a centaiation of the current quark mass.
DenotingA = MT,y, we obtain the following ratid (A) = <4§$;ﬂ> of the quark condensate thus
obtained to the one given by Eq. (1.6):

322 /1 du a\2 2a%+1 3 a\2 13a%+2
I()\)_T 0 l—aZ{4 ()\) 1-a? Jra2—1_(5) .(a2—1)2+
arccogl/a) [ 3a* a\2 3a%(a®+4) A
@1 [F—Sa +2+4 (o) ZE L where == @3
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The remainingu-integral in this expression has been calculated numéyicblsing the value of
Ty ~ 0.34fm in full QCD with light flavors [7], as well as the standaralues of the quark masses,
M ~ 1.3GeV,Mp ~ 4.2GeV, andV; ~ 173GeV, we obtain [2]:

|(McTg) ~0.60, [1(MpTy) ~0.84, |1(MTy) ~0.996 (3.4)

The obtained decreaseldf ) with the decrease dfl shows that, if one keeps using Eq. (1.6) while
decreasindv, thenM in Eq. (1.6) effectively gets larger than just the currerdifumnass.

Lattice calculations done in the SU(3) Yang—Mills theory; g well as the results of analytic
studies [1, 9, 10, 11] (cf. also Section 2), suggest the gadfi§; in that theory which can be smaller
than the above-quoted one by a factor ef 2. Accordingly, in QCD with only heavy flavors, the
value of Ty should also be smaller than the one in full QCD with light fi@voThis observation
suggests that the corrections to Eqg. (1.6) can be even l|#nigarthose given by Eq. (3.4). As
a result, Eq. (1.6) becomes inapplicable to thguark, since the corresponding 40%-correction
given by Eqg. (3.4) can increase further, up to 53% (cf. Rdj). [¥Ve notice that a qualitatively
similar conclusion has been drawn in Ref. [3], where theileadorrection to Eq. (1.6) has been
evaluated through a non-perturbative gluon propagatdrarFbck—Schwinger gauge.

Notice finally that, while the adopted world-line formalidras an advantage of being gauge-
invariant, it fails to calculate the self-energy contribatto the dynamical constituent quark mass.
It is for this reason that we had to restrict our analysis ® ¢hse of heavy quarks, where this
contribution can be safely disregarded compared to th@etiquark mass. In particular, one can
use ¥Tgy as a lower limit for the continuously varied heavy-quark siparameteM, noticing
that the current masses of, d-, ands-quarks are indeed smaller thayiT§. One then finds from
Eq. (3.3) that the absolute value of the quark condensath’lfefrT—lg is by 64% smaller than the
absolute value corresponding to Eq. (1.6).

4. Summary

In the first part of this talk, we have summarized the resuiRef. [1], which demonstrate
that the confining and the nonconfining nonperturbativeisédactions of stochastic background
Yang—Mills fields can have different correlation lengths.Ref. [1], these lengths have been ob-
tained from the Green functions of the one- and the two-glgiielumps. This has been done
by means of an analytic calculation of the correspondinghtgua-mechanical path integrals for
one and two gluons connected by strings with the static goaind with each other. In agreement
with the previous studies [8, 9, 10, 11], the correlationction D(x), which describes confining
interactions of the background fields, turns out to have dlenmaprrelation length than the func-
tion D1(x), which describes nonconfining nonperturbative interastidQuantitatively, the inverse
correlation length of the functioD(x), defined by the mass of the two-gluon gluelump, was found
to be~ 2.6GeV, while the inverse correlation length of the functdi(x), defined by the mass
of the one-gluon gluelump, is 1.6 GeV. These results are very close to the correspondingsalu
of 2.56 GeV and 5 GeV, which were obtained by using the Hamiltonian methdd$ &nd on the
lattice [12].

In the second part of the talk, we have summarized the cdicalaf the heavy-quark con-
densate done in Ref. [2]. This condensate has been obtaina@rious heavy flavors from the
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one-loop effective action (1.4) by using for the latter thesed-form expression (3.2) found in
Ref. [15]. This approach allowed us to use for the quark Willemp the most general ansatz (1.7),
which is provided by the stochastic vacuum model [4, 5]. Eguoa (3.4) provide the ratios of the
guark condensate thus obtained to the standard expredsti)ridr the heavy-quark condensate. As
one can see, corrections to Eqg. (1.6) amount to 16% fdo-ipeark, and vary from 40% to 53% for
thec-quark (cf. Ref. [2]), making Eq. (1.6) inapplicable in tlateér case. As has also been found
in Ref. [2], for the most simple, exponential, parametiaiof the two-point correlation function
of gluonic field strengths, the value of the heavy-quark emisate is not affected by nonconfining
nonperturbative interactions of gluonic fields, which aesaibed by the functioB(x).

The latter result parallels the proportionality of the duemndensate in the chiral limit to only
the chromo-electric part of the full gluon condensate,

(@) chiral 0 —Tg((9E?)?), (4.1)

which was found in Ref. [21]. How Eq. (1.6), along with the remtions discussed above, goes over
with the further decrease of the current quark mass to Efj) (dmains an open problem. A related
problem concerns a derivation of the constituent massegluf duarks within the same gauge-
invariant formalism of the effective action. In our opinjdhese two problems deserve dedicated
studies.
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