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In the first part of this talk, we discuss the calculation of the correlation lengths of confining as

well as of nonperturbative-nonconfining stochastic background Yang–Mills fields. This calcu-

lation was done in Ref. [1] by means of a direct analytic path-integral evaluation of the Green

functions of the so-called one- and two-gluon gluelumps. Numerically, the obtained correlation

lengths turn out to be in a good agreement with the results corresponding to the masses of these

objects found on the lattice. They also agree with the earlier analytic results obtained within the

Hamiltonian formalism. In the second part of the talk, we discuss the recent calculation of the

quark condensate for various heavy flavors. This calculation was done in Ref. [2] by means of the

effective-action formalism combined with the most generalparametrization of the quark Wilson

loop provided by the stochastic vacuum model. In particular, we show that the conventional for-

mula for the heavy-quark condensate becomes inapplicable in thec-quark case, where it acquires

the corrections that can reach up to 50%. This conclusion agrees with the one drawn in Ref. [3],

where the heavy-quark condensate was calculated by other analytic nonperturbative methods.
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1. Introduction

This talk addresses two fundamentally important issues of non-perturbative QCD. The first
issue is the theoretical foundations of the stochastic model of the QCD vacuum [1], the second
issue is the calculation of the quark condensate in terms of the gluon condensate for various heavy
flavors [2]. We find it possible to combine these two subjects into a single talk, since we use for
their study one and the same approach based on the analytic calculations of path integrals with the
minimal-area surfaces. The two subjects also have a common starting point, which is the formula
expressing the Wilson loop

〈W(C)〉 ≡ 〈W[zµ ]〉 =

〈

trP exp

(

ig
∫ s

0
dτ TaAa

µ żµ

)〉

(1.1)

through the two-point correlation function of gluonic fieldstrengths [4]:

〈W(C)〉 ≃ tr exp

[

−g2

8

∫

Σmin(C)
dσµν(x)

∫

Σmin(C)
dσλρ(x′)〈Fa

µν(x)TaΦxx′F
b
λρ(x′)TbΦx′x〉

]

. (1.2)

Here,Fa
µν = ∂µAa

ν − ∂νAa
µ + g fabcAb

µAc
ν is the Yang–Mills field-strength tensor, andTa’s are the

generators of the group SU(Nc) in the fundamental representation, obeying the commutation rela-
tion [Ta,Tb] = i f abcTc. The Wilson loop is unambiguously defined by the minimal-area surface
Σmin(C) bounded by the contourC, which is parametrized by the vector-functionzµ(τ). Further-
more,Φxx′ ≡ P exp

[

ig
∫ x

x′ dzµAa
µ(z)Ta

]

denotes a phase factor along the straight-line path inter-
connecting the pointsx′ andx, and the average〈. . .〉 is taken with respect to the Yang–Mills action
1
4

∫

d4x(Fa
µν)2. The most general parametrization of the two-point correlation function, which is

provided by the stochastic vacuum model [4, 5], contains twomutually independent tensor struc-
tures, namely

tr 〈Fa
µν(x)TaFb

λρ(0)Tb〉 =

= (δµλ δνρ −δµρδνλ )D(x)+
1
2

[

∂µ
(

xλ δνρ −xρδνλ
)

+ ∂ν
(

xρδµλ −xλ δµρ
)]

D1(x). (1.3)

As can be checked upon the substitution of Eq. (1.3) into Eq. (1.2), the functionD(x) yields con-
finement, while the functionD1(x) exists already in massive QED, yielding only Yukawa-type
interactions. According to the lattice data [6, 7], both functionsD(x) andD1(x) fall off exponen-
tially, and their correlation lengths are equal to each other within the errors of the corresponding
lattice calculations. The equality of the two correlation lengths has nevertheless been questioned by
the phenomenological studies done in Refs. [8, 9]. The results of these studies were indicating that
the correlation length of the functionD(x) could be smaller than that of the functionD1(x). These
indications were confirmed by the subsequent studies performed within the methods of potential
non-relativistic QCD [10] and the background perturbationtheory [11]. There, the correlation func-
tion (1.3) has been expressed via the Green functions of the so-called gluelumps. The latter are the
bound states of gluons in the field of a hypothetical infinitely heavy source transforming under the
adjoint representation. In particular, it has been found that the correlation lengths of the functions
D(x) andD1(x) are given by the inverse masses of, respectively, two- and one-gluon gluelumps,
which are known from the lattice data (cf. Ref. [12]). Hence,in Section 2, we summarize the re-
sults of Ref. [1], where the analytic calculation of the gluelumps’ Green functions has been shown
to provide two different vacuum correlation lengths.

2



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
1
2
7

Correlation lengths of nonperturbative stochastic Yang-Mills fields Dmitri Antonov

In Section 3, we discuss the calculation of the heavy-quark condensate for various heavy fla-
vors, which was done in Ref. [2]. To this end, we substitute the Wilson loop in the form given by
Eqs. (1.2) and (1.3) into the following one-loop effective action [13, 14, 15]:

〈Γ[Aa
µ ]〉 = 2

∫ ∞

0

ds
s

e−M2s×

×
∫

P
Dzµ

∫

A
Dψµ e−

∫ s
0 dτ( 1

4 ż2
µ+ 1

2ψµ ψ̇µ)exp

[

−2
∫ s

0
dτ ψµψν

δ
δσµν(z)

]

〈W[zµ ]〉. (1.4)

Here,P andA stand, respectively, for the periodic and the antiperiodicboundary conditions, so
that

∫

P ≡
∫

zµ (s)=zµ(0),
∫

A ≡
∫

ψµ (s)=−ψµ(0), andM is the current quark mass. The corresponding

expression for the heavy-quark condensate reads〈ψ̄ψ〉=− 1
V

∂
∂M 〈Γ[Aa

µ ]〉, whereV is the Euclidean
four-volume occupied by the system. Equation (1.4) also uses the fact that the productFa

µνTa,
which enters the quark spin term in the world-line action, can be recovered by means of the area-
derivative operator δ

δσµν
acting on the Wilson loop [16]. By virtue of this fact, all thegauge-

field dependence of the effective action becomes encoded in the Wilson loop (1.1). Furthermore,
since the Wilson loop is a color-neutral object, which is completely determined by the geometric
characteristics of its contour, the problem at issue reduces to the calculation of the effective action
in an auxiliaryAbeliangauge field [14].

For the mean sizes of the Euclidean trajectory of a heavy quark smaller than the vacuum
correlation length, one can use constantFa

µν as a leading approximation. By virtue of Eq. (1.2),
this results in the following expression for the nonperturbative contribution to a small-sized Wilson
loop (1.1) (cf. Ref. [4]):

〈W(C)〉 = Nc ·e−
〈(gFa

µν )2〉
48Nc

S2
min. (1.5)

Here, 〈(gFa
µν)2〉 is the gluon condensate, andSmin is the area of the surfaceΣmin(C). As was

shown in Ref. [14], Eq. (1.5), once substituted into Eq. (1.4), correctly reproduces the heavy-quark
condensate obtained within the method of the SVZ sum rules [17]:

〈ψ̄ψ〉SVZ = −
〈(gFa

µν)2〉
48π2M

. (1.6)

In Ref. [2] and in Section 3 below, we address the accuracy of Eq. (1.6) for various heavy flavors.
To this end, we calculate the effective action (1.4) by usingfor the Wilson loop the following
general expression resulting from Eqs. (1.2) and (1.3):

〈W(C)〉 = Nc ·exp

[

−
〈(gFa

µν)2〉
96Nc

∫

Σmin(C)
dσµν(x)

∫

Σmin(C)
dσµν(x′)e−|x−x′ |/Tg

]

. (1.7)

Here Tg is the correlation length of the functionD(x), and we have for simplicity assumed the
purely exponential parametrization of this function at alldistances. Furthermore, the contribution
of the functionD1(x) to Eq. (1.7) has been disregarded. The reason for that is provided by the
corresponding explicit calculation done in Ref. [2]. This calculation shows that, for the same
exponential parametrization of the functionD1(x), the contributions of this function to the effective
action cancel out.

Finally, in Section 4, we provide a summary of the results reported in this talk.
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2. Vacuum correlation lengths from the gluelump Green functions

In the Yang–Mills theory, gluelumps define the correlation lengths of the field-strengths’ two-
point function in the same way as, in full QCD, physically existing heavy-light mesons define the
correlation length of a nonlocal quark condensate〈ψ̄(x)Φxx′ψ(x′)〉 (cf. Refs. [9, 10, 11]). Unlike
the case of the fundamental representation, the adjoint representation allows for two different types
of heavy-light objects — those with a single gluon, called one-gluon gluelumps, and those with two
gluons, called two-gluon gluelumps. While the first case is similar to the above-mentioned nonlocal
quark condensate, the second case is conceptually different, since it corresponds to two gluons
connected together with the heavy source by three strings inthe fundamental representation. To
find the correlation lengths of the functionsD(x) andD1(x), we use the relations of these functions
to the Green functions of, respectively, two- and one-gluongluelumps. These relations, found in
Ref. [11], read

D(x) ∝ G2gl(x), D1(x) ∝ −dG1gl(x)

dx2 .

We consider first the Green function of a one-gluon gluelump,

G1gl(x) =
∫ ∞

0
ds
∫ x

0
Dzµ exp

(

−
∫ s

0

ż2
µ

4
dλ −σSmin

)

, (2.1)

where the minimal surface of the areaSmin is swept out by the string connecting a gluon to the
adjointly charged source. Accordingly, the string tensionσ is also the one in the adjoint repre-
sentation. Furthermore, the source of the gauge field is assumed to be static, which means that
it evolves only along thex4-axis, i.e. x = (0,L). The path integral entering Eq. (2.1) has been
calculated in Ref. [1] by majoratingSmin =

∫ L
0 dτ |z(τ)| through the Cauchy–Schwarz inequality:

Smin ≤
√

L
∫ L

0 dτ z2. This way, the said path integral has been reduced to that of an harmonic os-

cillator of a variable frequency. The resulting Green function, G1gl(x) ≃ σ√
3π3

e−
√

6σ |x|, yields the

mass of the one-gluon gluelump equal to
√

6σ ≃ 1.6GeV. Here, the string tension in the adjoint
representation has been evaluated via the so-called Casimir-scaling hypothesis [18]. This hypothe-
sis, supported both by lattice simulations [19] and analytic studies [5, 20], suggests proportionality
of the string tension in a given representation of the group SU(Nc) to the quadratic Casimir oper-
ator of that representation. For the adjoint representation of the group SU(3), it yieldsσ = 9

4σf,
where the standard phenomenological value of the string tension in the fundamental representa-
tion is σf = (440MeV)2. We observe that the above-quoted value of the mass of the one-gluon
gluelump turns out to be close to the value of 1.5 GeV, which was obtained in Ref. [11] from the
Schrödinger equation with the linear potential, as well as to the value of 1.4 GeV obtained on the
lattice in Ref. [12].

In the case of a two-gluon gluelump, the minimal surface formed by two gluons and the static
source has a triangular cross-section. The area of this surface can be parametrized asSmin =
∫ L

0 dτ (|z| + |z̄|+ |z− z̄|), wherez and z̄ are the spatial coordinates of the gluons. To majo-
rate this area-functional, a yet another form of the Cauchy–Schwarz inequality is useful:Smin ≤√

3
∫ L

0 dτ
√

z2 + z̄2 +(z− z̄)2. One can further majorate this expression in the same way as it was
done above for the one-gluon gluelump. Then the resulting path integral forG2gl(x) represents two

4
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mutually interacting harmonic oscillators of variable frequencies. To calculate this path integral,
one needs to perform a simultaneous diagonalization of the kinetic and the potential energies of
the two gluons, which is possible owing to the known fact thattwo positively definite quadratic
forms can be diagonalized simultaneously. As a result, one arrives at the path integral of two non-
interacting harmonic oscillators, so that the path integration can be done analytically. Referring
the reader for details to Ref. [1], we quote here the resulting mass of the two-gluon gluelump. It
reads 6

√
σf ≃ 2.6GeV, which is very close to the value of 2.56 GeV found in Ref.[11] via the

Hamiltonian approach.

3. Quark condensate for various heavy flavors

In order to calculate the effective action (1.4) with the Wilson loop (1.7), we choose the surface
elementdσµν in the form of an oriented, infinitely thin triangle built up of the position vectorzµ(τ)

and the differential elementdzµ = żµdτ , namelydσµν(z) = 1
2(zµ żν − zν żµ)dτ . Then the Wilson

loop can be represented in the form of a functional integral over an auxiliary antisymmetric-tensor
field Bµν :

〈W(C)〉 = Nc

∫

[

∏
µ<ν

DBµν e
− NcTg

π2〈(gFa
µν )2〉

∫

d4xBµν (−∂ 2+T−2
g )5/2Bµν

]

e
i
2

∫ s
0 dτ Bµν (z)zµ żν . (3.1)

One recognizes in the latter exponential factor a Wilson loop corresponding to the Abelian gauge
field Aν(x) = 1

2xµBµν(x). For this reason, one can write down for the effective action(1.4) a
closed-form expression containing two strength tensorsFµν = ∂µAν − ∂νAµ of the fieldAµ . This
expression reads

〈Γ[Aa
µ ]〉 = 2Nc

∫ ∞

0

ds
s

e−M2s

(4π)2

〈

∫

d4xFµν(x)F(ξ )Fµν(x)

〉

B
, (3.2)

where theB-average is defined by the functional integral in Eq. (3.1), and F(ξ ) is the following
formfactor [15]: F(ξ ) = f (ξ )−1

2ξ − 1
4 f (ξ ). In this formula, f (ξ ) =

∫ 1
0 dueu(1−u)ξ , andξ = sD2

µ ,
whereDµ = ∂µ − iAµ is the covariant derivative corresponding to the auxiliaryAbelian fieldAµ .
Representing further the formfactorF(ξ ) in an equivalent form,

F(ξ ) =
1

2(4πs)2

∫ 1

0
du
∫

d4y

(

4s
y2 − 1

2[u(1−u)]2

)

e−
y2

4u(1−u)s+yµ Dµ ,

and using the equality〈Fµν(x)eyµ Dµ Fµν(x)〉B = 〈Fµν(0)Fµν(y)〉B, we see that theB-average yields
expressions proportional to〈(gFa

µν)2〉e−|y|/Tg. This fact allows us to represent the quark condensate
in the form of a product of the gluon condensate and a certain function of the current quark mass.
Denotingλ ≡ MTg, we obtain the following ratioI(λ ) ≡ 〈ψ̄ψ〉

〈ψ̄ψ〉SVZ
of the quark condensate thus

obtained to the one given by Eq. (1.6):

I(λ ) =
3λ 2

4

∫ 1

0

du
1−a2

{

4+
( a

λ

)2
· 2a2 +1

1−a2 +
3

a2−1
−
( a

2λ

)2
· 13a2 +2
(a2−1)2+

+
arccos(1/a)

(a2−1)3/2

[

3a4

λ 2 −5a2 +2+
( a

2λ

)2
· 3a2(a2 +4)

a2−1

]}

, where a≡ λ
√

u(1−u)
. (3.3)
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The remainingu-integral in this expression has been calculated numerically. Using the value of
Tg ≃ 0.34fm in full QCD with light flavors [7], as well as the standardvalues of the quark masses,
Mc ≃ 1.3GeV,Mb ≃ 4.2GeV, andMt ≃ 173GeV, we obtain [2]:

I(McTg) ≃ 0.60, I(MbTg) ≃ 0.84, I(MtTg) ≃ 0.996. (3.4)

The obtained decrease ofI(λ ) with the decrease ofM shows that, if one keeps using Eq. (1.6) while
decreasingM, thenM in Eq. (1.6) effectively gets larger than just the current quark mass.

Lattice calculations done in the SU(3) Yang–Mills theory [6], as well as the results of analytic
studies [1, 9, 10, 11] (cf. also Section 2), suggest the values ofTg in that theory which can be smaller
than the above-quoted one by a factor of 2÷3. Accordingly, in QCD with only heavy flavors, the
value ofTg should also be smaller than the one in full QCD with light flavors. This observation
suggests that the corrections to Eq. (1.6) can be even largerthan those given by Eq. (3.4). As
a result, Eq. (1.6) becomes inapplicable to thec-quark, since the corresponding 40%-correction
given by Eq. (3.4) can increase further, up to 53% (cf. Ref. [2]). We notice that a qualitatively
similar conclusion has been drawn in Ref. [3], where the leading correction to Eq. (1.6) has been
evaluated through a non-perturbative gluon propagator in the Fock–Schwinger gauge.

Notice finally that, while the adopted world-line formalismhas an advantage of being gauge-
invariant, it fails to calculate the self-energy contribution to the dynamical constituent quark mass.
It is for this reason that we had to restrict our analysis to the case of heavy quarks, where this
contribution can be safely disregarded compared to the current quark mass. In particular, one can
use 1/Tg as a lower limit for the continuously varied heavy-quark mass parameterM, noticing
that the current masses ofu-, d-, ands-quarks are indeed smaller than 1/Tg. One then finds from
Eq. (3.3) that the absolute value of the quark condensate forM = 1

Tg
is by 64% smaller than the

absolute value corresponding to Eq. (1.6).

4. Summary

In the first part of this talk, we have summarized the results of Ref. [1], which demonstrate
that the confining and the nonconfining nonperturbative self-interactions of stochastic background
Yang–Mills fields can have different correlation lengths. In Ref. [1], these lengths have been ob-
tained from the Green functions of the one- and the two-gluongluelumps. This has been done
by means of an analytic calculation of the corresponding quantum-mechanical path integrals for
one and two gluons connected by strings with the static source and with each other. In agreement
with the previous studies [8, 9, 10, 11], the correlation function D(x), which describes confining
interactions of the background fields, turns out to have a smaller correlation length than the func-
tion D1(x), which describes nonconfining nonperturbative interactions. Quantitatively, the inverse
correlation length of the functionD(x), defined by the mass of the two-gluon gluelump, was found
to be≃ 2.6GeV, while the inverse correlation length of the functionD1(x), defined by the mass
of the one-gluon gluelump, is≃ 1.6GeV. These results are very close to the corresponding values
of 2.56GeV and 1.5GeV, which were obtained by using the Hamiltonian methods [11] and on the
lattice [12].

In the second part of the talk, we have summarized the calculation of the heavy-quark con-
densate done in Ref. [2]. This condensate has been obtained for various heavy flavors from the

6
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one-loop effective action (1.4) by using for the latter the closed-form expression (3.2) found in
Ref. [15]. This approach allowed us to use for the quark Wilson loop the most general ansatz (1.7),
which is provided by the stochastic vacuum model [4, 5]. Equations (3.4) provide the ratios of the
quark condensate thus obtained to the standard expression (1.6) for the heavy-quark condensate. As
one can see, corrections to Eq. (1.6) amount to 16% for theb-quark, and vary from 40% to 53% for
thec-quark (cf. Ref. [2]), making Eq. (1.6) inapplicable in the latter case. As has also been found
in Ref. [2], for the most simple, exponential, parametrization of the two-point correlation function
of gluonic field strengths, the value of the heavy-quark condensate is not affected by nonconfining
nonperturbative interactions of gluonic fields, which are described by the functionD1(x).

The latter result parallels the proportionality of the quark condensate in the chiral limit to only
the chromo-electric part of the full gluon condensate,

〈ψ̄ψ〉chiral ∝ −Tg〈(gEa)2〉, (4.1)

which was found in Ref. [21]. How Eq. (1.6), along with the corrections discussed above, goes over
with the further decrease of the current quark mass to Eq. (4.1) remains an open problem. A related
problem concerns a derivation of the constituent masses of light quarks within the same gauge-
invariant formalism of the effective action. In our opinion, these two problems deserve dedicated
studies.
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