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1. Introduction

Radiative transitions play an important role for our understanding of QCD, in particular of
heavy quarkonia. They provide information about the wave functions describing the physical sys-
tem and probe both the perturbative and non-perturbative regime. Especially E1 transitions give
significant contributions to the total decay rate and yield clean signals, which are observed in the
experimental facilities. In the last few years CLEO, BES andthe B factories have improved their
observations of radiative transitions, a review about recent developments can be found in [1].

On the theory side, electric dipole transitions were treated in several potential models, a sum-
mary can be found in [2]. We will refer to [3] for comparison with our results. A model-independent
treatment to check and improve the calculations has been missing so far. However, in the last decade
there has been significant progress using effective field theories (EFTs) to describe heavy quarko-
nium (see [4] and references therein). Since heavy quarkonium is assumed to be a non-relativistic
system we may take advantage of the hierarchy of scalesm≫ mv≫ mv2, wherev≪ 1 is the heavy
quark velocity,m is the heavy quark mass ("hard scale"),p∼ mv is the relative momentum of the
bound state ("soft scale") andE ∼ mv2 is the binding energy ("ultrasoft scale"). The ultimate EFT
living at the ultrasoft scale is potential non-relativistic QCD (pNRQCD). In 2005, for the first time
radiative decays, concretely M1 transitions, were calculated in this theory [5]. Using the frame-
work of that paper as a guideline we close the remaining gap and compute the decay rates of E1
processes between S and P states (liken3PJ → n′3S1 γ). The following is based on [6].

2. Framework

By integrating out the hard scalem≫ ΛQCD from the fundamental theory (QCD) in perturba-
tion theory (αs(m)≪ 1) one obtains non-relativistic QCD (NRQCD) [7, 8]. For the calculation of
E1 transitions at relative orderv2 only the two-fermion LagrangianL2− f matters and the relevant
part reads

L2− f = ψ†
(

iD0+
D2

2m
+

D4

8m3

)

ψ +eeQψ†
(

cem
F

2m
σ ·Bem+ i

cem
s

8m2σ ·[D×,Eem]

)

ψ +c.c. . (2.1)

with iD0 = i∂0−gTaAa
0−eeQAem

0 , iD = i∇+gTaAa+eeQAem andψ denoting a Pauli spinor for
the heavy quark. The matching coefficients are found to becem

F = 1+CFαs(µH)/2π +O(α2
s ) and

cem
s = 2cem

F −1 with µH ∼ m.
For processes at the ultrasoft scale, NRQCD is not yet the appropriate theory, since there

are still several scales entangled (p,E,ΛQCD) and thus no homogeneous power counting can be
established. Integrating out the soft scalemvwe obtain a theory for ultrasoft modes, i.e. pNRQCD
[9, 10]. The crucial step to disentangle the energy and momentum scale is the multipole expansion
in the relative distancer. To be definite we will use the power counting in the weak-coupling
regime (p≫ E & ΛQCD), which reads

r ∼ 1/mv, ∇r ≡ ∂/∂r ∼ mv, ∇ ≡ ∂/∂R ∼ mv2, E,B ∼ (mv2)2, Eem,Bem∼ k2
γ . (2.2)

kγ is the energy of the emitted photon, which scales likemv2 for transitions between states with
different principal quantum numbers.
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The pNRQCD-Lagrangian contributing at NLO in the decay rate, i.e. at orderk3
γ v0/m2, reads

LpNRQCD=

∫

d3rTr

{

S†

(

i∂0+
∇2

4m
+

∇2
r

m
+

∇4
r

4m2 −VS

)

S+O†

(

iD0+
D2

4m
+

∇2
r

m
−VO

)

O

+ gVA(O
†r ·ES+S†r ·EO)

}

+LγpNRQCD+Llight , (2.3)

where the covariant derivatives are given byiD0O= i∂0O−g[TaAa
0,O] andiDO= i∇O+g[TaAa,O]

and the trace goes over the color and spin indices. The singlet potentialVS has been calculated per-
turbatively and non-perturbatively to order 1/m2 ([11, 12, 13], for more original references see [4]),
we display the structure of the relevant potentials for computations at NLO in the decay rate,

VS(r) =V(0)(r)+
V(1)

r (r)
m

+
V(2)

SI (r)

m2 +
V(2)

SD (r)

m2 , (2.4)

V(2)
SI (r) =V(2)

r (r)+
1
2
{V(2)

p2 (r),p2}+
V(2)

L2 (r)

r2 L2 , (2.5)

V(2)
SD (r) =V(2)

LS (r)L ·S+V(2)
S2 (r)S2+V(2)

S12
(r) [3(r̂ ·σ1)(r̂ ·σ2)−σ1 ·σ2] . (2.6)

The relevant part ofLγpNRQCD for E1 transitions is

L
E1

γpNRQCD= eeQ

∫

d3r Tr

{

V r ·ES†r ·EemS+Vr ·E
O O†r ·EemO+

1
24

V(r∇)2r ·ES†r · [(r∇)2Eem]S

+ i
1

4m
V∇·(r×B)S†{∇·,r×Bem}S

+ i
1

12m
V∇r ·(r×(r∇)B)S†{∇r ·,r× [(r∇)Bem]}S

+
1

4m
V(r∇)σ ·B[S†,σ ] · [(r∇)Bem]S

−i
1

4m2Vσ ·(E×∇r)[S†,σ ] · (Eem×∇r)S

}

. (2.7)

In fact more terms are allowed according to the symmetries ofpNRQCD. However, we can show
that their matching coefficients vanish. The matching is done by equating Green’s functions in
NRQCD and pNRQCD at the energy scalemvorder by order in the inverse mass.

The crucial argument for several operators is that diagramsin NRQCD which can be cast into a
reducible structure also give reducible diagrams in pNRQCD. Therefore they have to be subtracted
to obtain irreducible operators in pNRQCD and do not play a role in the matching procedure. An
example is the diagram in Fig. 1, where the gluonic contribution can be factorized out yielding just
a potential. Using this argument we can fix all of the Wilson coefficients in (2.7) at leading order
in αem, so that the exact results reproduce the ones from tree levelcalculations, namely

V r ·E =V r ·E
O =V(r∇)2r ·E =V∇·(r×B) =V∇r ·(r×(r∇)B) = 1,V(r∇)σ ·B = cem

F ,Vσ ·(E×∇r ) = cem
s . (2.8)

With the help of the formalism developed in [5] we can describe the states in a quantum
mechanical way using wave functions and compute the decay rate at NLO, i.e. at relative orderv2,
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−→
pNRQCD

VS VS
+

Figure 1: Example for a reducible diagram, if the electromagnetic operator commutes with the gluonic ones.
It does not contribute to the matching coefficient of a singleoperator.

from the Lagrangian (2.7). We obtain

Γn3PJ→n′3S1γ =
4
9

αeme2
Qk3

γ I2
3(n1→ n′0)

(

1+R−
k2

γ

60
I5
I3
−

kγ

6m
+

kγ (cem
F −1)
2m

[

J(J+1)
2

−2

]

)

,

(2.9)
where

IN ≡
∫ ∞

0
dr rNRn′0(r)Rn1(r) . (2.10)

R contains all of the wave-function corrections due to the higher-order potentials mentioned in
(2.4)-(2.6), the relativistic correction of the kinetic energy,−p4/4m3, and higher-order Fock state
contributions due to intermediate color-octet states. In contrast to M1 transitions the latter ones do
not vanish for E1 decays (see [6] for explicit expressions).

The expression (2.9) is also valid in the strongly coupled regime (without color-octet contri-
butions inR), wherep∼ ΛQCD, since we made use of non-perturbative matching arguments and
additional operators do not appear in this regime.

Compared to the results with the potential model calculation in [3] we find an equivalence
between (2.9) and the corresponding formula there at the given order. However, our definite power
counting allowed us to include all relativistic corrections systematically, in particular the color-octet
contributions in the weak-coupling regime and the one coming from the potentialV(1)

r . Both were
missing in former approaches. Furthermore we can show that the anomalous magnetic moment
cem

F − 1 ∼ O(αs(m)) is actually suppressed and does not lead to large non-perturbative contribu-
tions.

Without much effort one can extend the discussion to other processes liken1P1 → n′1S0γ
andn3S1 → n′3PJγ (see [6]), also for transitions between states with the sameprincipal quantum
number, where corrections∼ kγ are suppressed.

3. Phenomenological analysis

Based on these results a phenomenological analysis for bottomonium and charmonium de-
cays at relative orderv2 can be performed. For a complete analysis we need a parametrization of
chromoelectric field correlators in the weak coupling regime. Since E1 transitions always involve
excited states, we alse require the quarkonium potentials in the strong coupling regime. These have
to be matched with the known short distance behaviour.
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As a first approach we proceed as following: As a parametrization of the static potential at
short distances we use the perturbative expression at 3 loopwith leading ultrasoft resummation
with the parameters given in [14, 15] (see also references therein)1 derived from a matching of
the static energy to unquenched lattice data [17]. For largedistances we use the string potential
Vstring = −π/12r +σ r +C [18] matched to lattice simulations [17] atr = 1.5r0 (wherer0 is the
Sommer scale). These two potentials merge together smoothly at r ∼ 0.8r0. To obtain the leading
order wave functions we solve the Schrödinger equation withthe static potential numerically using
theMathematicaprogram schrodinger.m[19]. We fix the charm and bottom mass in our scheme a
posteriori by matching the obtained masses for theJ/ψ andϒ(1S) with the physical ones.

Concerning relativistic corrections the main contribution arises from wave function corrections
due to subleading potentials. For short distances, here forr < (2GeV)−1, we apply perturbative
results at LL, wheras for long distances,r > (2GeV)−1, we use parametrizations from quenched
lattice results [20, 21, 22] as a non-perturbative input.2 Future approaches should aim for smooth
transitions between these two regimes. We neglect color octet effects, which cannot be determined
from current lattice simulations.

The results of this computation are given in table 1 for bottomonium and in table 2 for char-
monium decays. We do not include decays withkγ & 〈p〉, where our power counting is assumed
to break down. We see that the relativistic corrections lower the decay rates considerably, by 10-
30% for bottomonium and by 20-60% for charmonium, which is especially striking for the decays
hc(1P)→ ηc(1S)γ andψ(2S)→ χc0(1P)γ . The wave function correction due to the potentialV(1)

r

yields particularly large contributions. The expansion works much better for bottomonium, since
the average relative velocity is smaller (v2

b ∼ 0.1, v2
c ∼ 0.3). We estimate the uncertainty of our

NLO result to be of order 10% for bottomonium and of order 30% for charmonium. This is on
the one hand the generic size of a correction atO(v2), which can arise from color-octet effects or
a systematic error in the treatment of the subleading potentials. On the other hand this is also a
conservative measure for the total higher order effects, which are supposed to be suppressed byv
compared to the total NLO corrections.

Comparing our values with the potential model calculationsin [3] (for scalar and vector con-
fining potential) we tend to get slightly larger values for bottomonium and slightly smaller values
for charmonium. Within our uncertainties we stay consistent with observations, provided both the
branching fraction and the total decay rate have been measured.

We emphasize that except for the masses of theJ/ψ andϒ(1S) and the photon energies no ex-
perimental input has been used. Additional input and a thorough investigation of the fine splitting
effects in the spectrum would improve the predictive power of our results. This analysis should
be repeated, when unquenched results for the required chromoelectric field correlators and espe-
cially for the subleading potentials become available, with emphasis on a proper connection to
perturbative results, maybe at higher order (NLL), and a more elaborate uncertainty estimate.

1To obtain a convergent behaviour one has to perform a renormalon subtraction at a scaleρ [16]. In [14] αs(1/r)
was expanded in terms ofαs(ρ) to get a more stable behaviour. For short distances,r < 0.14r0, large logarithms yield
an unreasonable shape of the potential, therefore we expandαs(ρ) in terms ofαs(1/r) in this regime.

2As far as available we use fits with parametrizations based oncalculations from the string model [23].V(2)
r (so far

undetermined) andV(2)
S2 (small) are set to 0 in the non-perturbative regime.
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process ΓLO
pNRQCD/keV ΓNLO

pNRQCD/keV Γ[3]
mod/keV ΓPDG

exp /keV

χb0(1P)→ ϒ(1S)γ 31.8 29.7± 3.1 25.7-27.0 -
χb1(1P)→ ϒ(1S)γ 40.3 35.8± 4.0 29.8-31.2 -
χb2(1P)→ ϒ(1S)γ 45.9 40.6± 4.6 33.0-34.2 -
hb(1P)→ ηb(1S)γ 64.2 46.8± 6.4 - -
ϒ(2S)→ χb0(1P)γ 1.52 1.13± 0.15 0.72-0.73 1.22± 0.16
ϒ(2S)→ χb1(1P)γ 2.26 1.94± 0.23 1.62-1.65 2.21± 0.22
ϒ(2S)→ χb2(1P)γ 2.34 2.19± 0.23 1.84-1.93 2.29± 0.22
χb0(2P)→ ϒ(2S)γ 12.6 13.0± 1.3 10.6-11.4 -
χb1(2P)→ ϒ(2S)γ 17.1 16.3± 1.7 11.9-12.5 -
χb2(2P)→ ϒ(2S)γ 20.4 18.1± 2.0 12.9-13.1 -
ϒ(3S)→ χb0(2P)γ 1.44 1.05± 0.14 1.07-1.09 1.20± 0.16
ϒ(3S)→ χb1(2P)γ 2.38 2.05± 0.24 2.15-2.24 2.56± 0.34
ϒ(3S)→ χb2(2P)γ 2.53 2.35± 0.25 2.29-2.44 2.66± 0.41

Table 1: E1 decay rates for bottomonium. Our pNRQCD results comparedto a potential model calculation
[3] and and the current PDG values [24]. LO denotes the resultobtained without relativistic corrections,
NLO indicates the result up toO(v2) neglecting color-octet effects in the weak-coupling regime and non-

perturbative contributions toV(2)
r . The error estimates give the generic size of oneO(v2) correction as well

as an estimate for the sum of all corrections atO(v3). Forhb(1P)→ ηb(1S)γ we have takenmηb(1S) = 9392
GeV [25] to determine the photon energy.

process ΓLO
pNRQCD/keV ΓNLO

pNRQCD/keV Γ[3]
mod/keV ΓPDG

exp /keV

χc0(1P)→ J/ψγ 199 158± 60 162-183 122± 11
χc1(1P)→ J/ψγ 421 302± 126 340-363 296± 22
χc2(1P)→ J/ψγ 568 415± 170 413-464 386± 27

hc(1P)→ ηc(1S)γ 909 447± 272 - <600
ψ(2S)→ χc0(1P)γ 53.6 21.4± 16.1 26.0-40.3 29.4± 1.3
ψ(2S)→ χc1(1P)γ 45.2 30.7± 13.6 28.3-37.3 28.0± 1.5
ψ(2S)→ χc2(1P)γ 31.6 25.6± 9.5 17.5-22.7 26.5± 1.3
ηc(2S)→ hc(1P)γ 38.1 31.0± 11.4 - -

Table 2: E1 decay rates for charmonium. Our pNRQCD results at LO, NLO (including error estimate)
compared to a potential model calculation [3] and the current PDG values [24].
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