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Recent results for the radiative improvement of the lattice NRQCD action, specifically for the σ ·B
term, the Darwin term, and the non-derivative four-fermion terms, are presented. The corrections
to the spin-dependent terms are found to have a significant impact on the value of the hyperfine
splitting, both for bottomonia and heavy-light mesons, pushing the theoretical prediction towards
the experimental value. The spin-independent terms are affected by both lattice artifacts and
severe IR divergences, rendering their evaluation complicated.
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1. Introduction

Non-Relativistic QCD (NRQCD) [1] on the lattice has been used for a successful description
of hadrons containing heavy quarks. The lattice NRQCD action used by the HPQCD collaboration
is given by

S = ∑
~x,τ

ψ
†(~x,τ) [ψ(~x,τ)−K(τ)ψ(~x,τ)]

with the kernel

K(τ) =

(
1− δH|τ

2

)(
1− H0|τ

2n

)n

U†
4 (τ−1)

(
1− H0|τ−1

2n

)2(
1− δH|τ−1

2

)
,

where

H0 =
∆(2)

2M0
, δH =−c1

(∆(2))2

8M3
0

+ c2
ig

8M2
0

(
~∆± ·~E−~E ·~∆±

)
−c3

g
8M2

0
~σ ·
(
~∆±×~E−~E×~∆±

)
− c4

g
2M0

~σ ·~B+ c5a2 ∆(4)

24M0
+ c6a

(∆(2))2

16nM2
0
,

with the operators normalized so as to put the tree-level values of the matching coefficient equal to
one, ci = 1+O(αs), and n≥ 3/(M0a) is a stability parameter.

Until recently, the higher-order corrections to the coefficients in the action were not known.
We have now demonstrated [2] that the combination of the radiative improvement of the coeffi-
cient c4 of the chromomagnetic moment operator and the inclusion of spin-dependent four-fermion
operators into the action leads to a significant shift in the value of the bottomonium hyperfine split-
ting, putting the theoretical prediction into agreement with experiment. Here we present an update
on the improvement of these spin-dependent operators, as well as first results for the radiative im-
provement of the Darwin term and the leading spin-independent four-fermion operators (cf. also
[3]).

2. NRQCD/QCD Matching Using Background Field Gauge

To extend the matching to the one-loop level, we require some suitably chosen set of renor-
malized one-loop S-matrix elements to agree between QCD and NRQCD. Since the terms in δH
are bilinear in the quark field, quark scattering off a background field can be used, leading to the
condition that QCD and NRQCD give the same effective potential after non-relativistic reduction:

QCD NR reduction−−−−−−−→
using ci

tree-level
NRQCD

1PI

y y1PI

Γ −−−−−−−→
NR reduction

ΓNR

The effective potential in the presence of a classical background field Bµ is defined by

e−Γ[Bµ ] =
∫

1PI

Dqµ e−S[Bµ+gqµ ] ,

where the path integral over the quantum fluctuations qµ is defined only in perturbation theory
restricted to 1PI diagrams.
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2.1 Calculating in background field gauge

The BRST invariance of the classical action S guarantees that all D≤ 4 operators appearing in
the effective action Γ are gauge covariant, implying in particular the renormalizability of QCD. The
D > 4 operators that will appear in Γ are, however, not necessarily gauge covariant. Since NRQCD
is an effective theory, its classical action S contains D > 4 operators. Gauge covariance can be
imposed at tree level. At the level of loop corrections, gauge covariance must also be retained
to avoid serious complications: although the appearance of gauge-noncovariant operators as such
would not invalidate the theory, having to keep track of their gauge dependence in subsequent
calculations would be a significant annoyance.

As has been shown long ago, [4], the gauge covariance of the effective action can be assured
by using background field gauge (BFG), which is given by the gauge fixing function

f (A) = DB
µqµ = (∂µ + iBµ)qµ ,

so that not only the propagator, but also the vertices with exactly two quantum gluons depend on the
gauge parameter. On the lattice, the background and quantum fields are defined by decomposing
the gauge link into the ordered product

Uµ(x) = eg0qµ (x+ 1
2 µ̂)eBµ (x+ 1

2 µ̂) .

Since the quantum field occurs to the left of the background field, the Feynman rules will depend
not only on the number of background and quantum fields entering a vertex, but will also contain
different terms from different orderings (e.g. Bqq, qBq, qqB) that contribute to the same vertex.
The discretized gauge fixing function

f (A) = DB
µqµ(x) =

[
qµ(x)− e−Bµ (x− µ̂

2 )qµ(x− µ̂)eBµ (x− µ̂

2 )
]

again affects all vertices with exactly two quantum gluons (of which there is an infinite sequence
on the lattice). The HiPPY/HPsrc packages for automated lattice perturbation theory [5] have been
extended to support the automated derivation of the Feynman rules also for BFG calculation.

Lattice gauge theories in BFG are known to be renormalizable [6]. An important feature of
BFG which we will exploit in the following is that it implies a set of QED-like Ward identities
and finite counterterms; we can therefore compute both the lattice and the continuum diagrams
numerically, and we do not need to calculate the gauge field renormalization. We benefit from this
especially in that it allows us to easily check the gauge-parameter independence of our results for
c4 and c2 (which have to be gauge-parameter independent, since they could also be defined non-
perturbatively in terms of physical mass splittings). The non-trivial gauge-parameter independence
of the results is an important check on their correctness.

2.2 Matching bilinears

The effective action for continuum QCD contains terms of the form

Γ[Ψ,Ψ,A] = ΨF1(q2) 6DΨ+Ψ
F2(q2)σ µνFµν

2M
Ψ+ . . .
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(a)(a) (b)(b)

(c)(c) (d)(d)

(e)(e) (f)(f)

Figure 1: The one-particle irreducible diagrams entering the matching of the σ ·B and Darwin terms in
NRQCD at the one-loop level. On the QCD side, only diagrams (a) and (b) need to be computed, while
in NRQCD all diagrams contribute; note that diagrams (c)–(f) contain not only lattice artifacts, but also
physical contributions from higher orders in 1/m.

which after renormalization and non-relativistic reduction give a σ ·B term of

(1+F2(0)F1(0)−1︸ ︷︷ ︸
=bσ

)ψ†
R
~σ ·~B
2MR

ψR ,

and a Darwin term of

(1−8M2
RF ′1(0)+2F2(0)︸ ︷︷ ︸

=bD

)ψ†
R

(
−gq2A0

8M2
R

)
ψR .

A fairly straightforward calculation yields

b(1)σ =

(
3

2π
log

µ

M
+

13
6π

)
α b(1)D =

(
− M2

πµ2 −
7M
4µ
− 1

π
− 50

9π
log

µ

M

)
α

for the coefficients of these operators.
On the NRQCD side, the effective action contains the terms

Γ
NR[ψ,ψ†,A] = c4ZNR

σ ψ
† iσ · (q∧A)

2M
ψ− c2ZNR

D ψ
† gq2A0

8M2 ψ + . . . ,
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which after renormalization give

Γ
NR[ψR,ψ

†
R,A] = c4ZNR

σ ZNR
2 ZNR

m ψ
†
R

iσ · (q∧A)
2MR

ψR− c2ZNR
D ZNR

2 (ZNR
m )2

ψ
†
R

gq2A0

8M2
R

ψR + . . . .

Equating the corresponding terms in ΓNR gives the matching conditions

c4ZNR
σ ZNR

2 ZNR
m = 1+bσ

c2ZNR
D ZNR

2 (ZNR
m )2 = 1+bD

confirming c(0)i = 1 at tree-level, and yielding the one-loop coefficients

c(1)2 = b(1)D −δZNR,(1)
D −δZNR,(1)

2 −2δZNR,(1)
m ,

c(1)4 = b(1)σ −δZNR,(1)
σ −δZNR,(1)

2 −δZNR,(1)
m ,

where we have split the renormalization constants as Z = 1+δZ.
In lattice NRQCD, δZNR,(1)

σ ,D,m receive contributions not only from the Feynman diagrams shown,
but also from the mean-field improvement U 7→U/u0 of the action, whereby the link variables are
divided by their mean-field value to reduce higher-order corrections, and we take these “tadpole”
contributions into account explicitly.

2.3 Matching four-fermion operators

Beyond tree level, the NRQCD action will also contain four-fermion terms

L4 f = d1
αs

M2 (ψ
†
χ
∗)(χ t

ψ)+d2
αs

M2 (ψ
†
σ χ
∗)(χ t

σψ)

+d3
αs

M2 (ψ
†ta

χ
∗)(χ tta

ψ)+d4
αs

M2 (ψ
†
σta

χ
∗)(χ t

σta
ψ)

= a1
g2

M2 (χ
†
χ)(ψ†

ψ)+a8
g2

M2 (χ
†tt

aχ)(ψ†taψ)

+b1
g2

M2 (χ
†
σ
∗
χ)(ψ†

σψ)+b8
g2

M2 (χ
†
σ
∗tt

aχ)(ψ†
σtaψ)

where the coefficients di that are linear combinations of the coefficients ai, bi that can be determined
by Fierz transformations.

The coefficients ai, bi are most easily computable from the box diagrams of fig. 2. In addition
to these, the coefficients di receive contributions accounting for the fact that QQ annihilation is
possible in QCD, but not in NRQCD. For the purposes of determining the spin-dependent part, the
relevant contribution is

dann
1 =− 2αs

9M2 (2−2log2).

3. Divergences and artifacts

While the final results for the matching coefficients must necessarily be IR-finite, the Feynman
diagrams that need to be calculated are IR divergent in both QCD and NRQCD. We use a gluon
mass µ to regulate these divergences.
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(a)(a) (b)(b)

(c)(c) (d)(d)

Figure 2: The one-particle irreducible diagrams entering the matching of the four-fermion interactions in
NRQCD. In QCD, only the box and cross-box diagrams contribute, while in NRQCD all diagrams must be
computed.

We note that the use of a gluon mass does not ruin the gauge-covariance of our results, as we
could also have introduced the gluon mass through inducing the spontaneous symmetry breaking
SU(3)→U(1)3×U(1)8, which for the quark bilinears gives precisely the diagrams we are cal-
culating for the form factors of the (massless) U(1)8 gluon when working in a renormalizable Rξ

gauge. At higher loop orders there would be additional diagrams involving the remaining massless
scalar fields; moreover, the existence of these fields means that in the limit µ→ 0, QCD would not,
in general, be recovered.

Another way to justify the use of a gluon mass is to note that at the one-loop level, the same
diagrams arise for the quark bilinears with a gluon mass as would arise in the Curci-Ferrari theory
[7] which is known both to be renormalizable and to recover QCD in the limit µ → 0. The use
of the Curci-Ferrari formulation to regulate IR divergences arising during the calculation of IR
finite gauge-invariant quantities is well established [8]. Beyond the one-loop level, processes in the
Curci-Ferrari theory will receive contributions from additional diagrams compared to QCD, but at
the one-loop level the inclusion of gluon and ghost masses suffices.

The IR logarithm log(µa) from lattice NRQCD then combines with the IR logarithm log(µ/M)

from continuum QCD side to yield the expected logarithmic log(Ma)-dependence for the matching
coefficient.

For power divergences, such combinations are not possible, and hence these must match be-
tween QCD and NRQCD. The IR power divergences in the spin-independent are rather severe, go-
ing up to O(M3/µ3), whereas the spin-dependent part is rather more mildly IR divergent, only up
to O(M/µ). We subtract the analytically known power divergences from the NRQCD integrands
before performing the loop integrations. For the spin-dependent part this is enough to render it
well-defined.

The spin-independent part, however, can also receive contributions from single-gluon ex-
change, which gives an a2 log(µa) IR divergence. This IR divergence cancels against an a2 log(µa)
divergence in the sum of the box diagrams that arises where O(k2a2) lattice artifacts move the lead-
ing IR divergences to lower orders. The cancellation is ensured by the fact that these artifact
divergences can only occur in diagrams involving the exchange of only temporal gluons, since the
spatial gluon coupling carries an additional power of momentum. The artifact divergences thus
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survive the static limit and contribute to the Coulomb potential, which is O(a2) improved for the
Lüscher-Weisz action used here. Nevertheless, the presence of these artifact divergences at inter-
mediate stages renders the calculation of the spin-independent part rather difficult; the calculation
is now completed, and the results will be reported in the near future.

4. Physical Impact

The most immediate physical impact of the spin-dependent terms is to induce a hyperfine
splitting (HFS) in heavy-quark mesons.

In the case of bottomonium, the leading contribution to the HFS from single-gluon exchange is
∼ c2

4; at the same order, the four-fermion interactions contribute∼ (d1−d2). It is empirically found
that the four-fermion contribution acts to reduce the discretization effects on the HFS; in addition,
the larger value of the four-fermion coefficients found when including spin-dependent O(v6) terms
appears to partially compensate for the smaller HFS found with this action [9].

Taking both contributions together, the radiative improvement of the action has a significant
impact on predictions, as it corrects the measured 1S HFS ∼ 60 MeV to 70 MeV, putting it into
agreement with experiment [10]. Using the radiatively improved action, the HPQCD collaboration
has also made the prediction of 35(3)(1) MeV for the 2S HFS [11], which agrees with the newest
Belle results [12].

In the case of B mesons, there are no four-fermion interactions that could contribute to the
HFS, which receives its leading contribution ∼ c4 from single-gluon exchange. When including
the radiative corrections to c4, HPQCD finds good agreement with experiment for the HFS of the
Bd and Bs systems. As a result a prediction for the Bc HFS [13] becomes possible.

The impact of the Darwin term is much less noticeable: the bottomonium S-wave energy shift
∼ c2 will constitute only a very small effect except on very coarse lattices. However, since the
masses of S-wave bottomonia are used to calibrate the lattice spacing, including the correction to
the Darwin term will help to increase the overall accuracy of the lattice predictions.

5. Conclusions

The inclusion of radiative improvement into the lattice NRQCD action can be achieved by
calculating quark form factors in BFG and matching the results between continuum QCD and
lattice NRQCD. In addition, four-fermion terms incorporating the difference between QCD and
NRQCD quark-antiquark scattering matrix elements need to be added to the NRQCD action.

What is found is that there is a noticeable difference between spin-dependent and spin-inde-
pendent terms: the spin-dependent terms are only mildly affected by IR divergences and have
significant physical impact, to the extent that the agreement of the theory with experiment depends
on their radiative improvement.

The spin-independent terms are more IR divergent, making them more subtle to compute; at
the same time, they have little impact on heavy-quark spectra.

Detailed numerical results for all coefficients will be given in a forthcoming publication [14].

Acknowledgements: We thank the DEISA Consortium, co-funded through the EU FP6 project RI-031513 and
the FP7 project RI-222919, for support within the DEISA Extreme Computing Initiative. This work was supported by

7



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
1
4
8

Radiative improvement of lattice NRQCD G.M. von Hippel

STFC under grants ST/G000581/1 and ST/H008861/1. GMvH was supported in part by the DFG in the SFB 1044. The
calculations for this work were, in part, performed on the University of Cambridge HPCs as a component of the DiRAC
facility jointly funded by STFC and the Large Facilities Capital Fund of BIS.

References

[1] G. P. Lepage, L. Magnea, C. Nakhleh, U. Magnea and K. Hornbostel, Phys. Rev. D 46 (1992) 4052
[hep-lat/9205007].

[2] T. C. Hammant, A. G. Hart, G. M. von Hippel, R. R. Horgan and C. J. Monahan, Phys. Rev. Lett. 107
(2011) 112002 [arXiv:1105.5309].

[3] T. C. Hammant, A. G. Hart, G. M. von Hippel, R. R. Horgan and C. J. Monahan, PoS(LATTICE
2012)154 [arXiv:1212.2849].

[4] B. S. DeWitt, Phys. Rev. 162 (1967) 1195; B. S. DeWitt, Phys. Rev. 162 (1967) 1239;
H. Kluberg-Stern and J. B. Zuber, Phys. Rev. D 12 (1975) 482; A. Rebhan, Nucl. Phys. B 288 (1987)
832.

[5] T. C. Hammant, R. R. Horgan, C. J. Monahan, A. G. Hart, E. H. Müller, A. Gray, K. Sivalingham and
G. M. von Hippel, PoS(LATTICE 2010)043 [arXiv:1011.2696]; A. Hart, G. M. von Hippel,
R. R. Horgan and E. H. Müller, Comput. Phys. Commun. 180 (2009) 2698 [arXiv:0904.0375].

[6] M. Lüscher and P. Weisz, Nucl. Phys. B 452 (1995) 213 [hep-lat/9504006].

[7] G. Curci and R. Ferrari, Nuovo Cim. A 32 (1976) 151; G. Curci and R. Ferrari, Nuovo Cim. A 35
(1976) 1; L. von Smekal, M. Ghiotti and A. G. Williams, Phys. Rev. D 78 (2008) 085016
[arXiv:0807.0480].

[8] G. Curci and E. d’Emilio, Phys. Lett. B 83 (1979) 199; I. Ojima, Z. Phys. C 13 (1982) 173; A. Blasi
and N. Maggiore, Mod. Phys. Lett. A 11 (1996) 1665 [hep-th/9511068]; R. Browne and J. Gracey,
Phys. Lett. B 540 (2002) 68 [hep-th/0206111]; K.-I. Kondo, K. Suzuki, H. Fukamachi, S. Nishino and
T. Shinohara, arXiv:1209.3994.

[9] S. Meinel, Phys. Rev. D 82 (2010) 114502 [arXiv:1007.3966].

[10] R. J. Dowdall, PoS(LATTICE 2011)118 [arXiv:1111.0449].

[11] R. J. Dowdall et al. [HPQCD Collaboration], Phys. Rev. D 85 (2012) 054509 [arXiv:1110.6887].

[12] R. Mizuk et al. [Belle Collaboration], arXiv:1205.6351.

[13] R. J. Dowdall, C. T. H. Davies, T. C. Hammant and R. R. Horgan, arXiv:1207.5149.

[14] T. C. Hammant, A. G. Hart, G. M. von Hippel, R. R. Horgan and C. J. Monahan, in preparation.

8


