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QCD sum rules are analyzed using the maximum entropy method, which makes it possible to

have direct access to the spectral functions of two-point correlators. In the traditional analysis of

QCD sum rules, one employs the “pole + continuum” ansatz for the physical region of the spectral

function and extracts the position and residue of the low-lying pole. Our Bayesian approach puts

less restrictions on the functional form of the spectral function, and thus provides an ideal tool

for analyzing hadronic spectral functions and their modification at finite temperature or density.

In these proceedings, after a brief description of the method, our results obtained in theρ-meson

and nucleon channels will be reviewed.
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1. Introduction

QCD sum rules have long been used to describe the physical properties of hadrons directly
from QCD [1, 2]. While this approach was ofter quite successful, it also has its limitations. Firstly,
the uncertainties that are involved in the calculation of the operator product expansion (OPE) are
quite large, mainly coming from the possible range of values of the condensates and the unknown
contributions from the higher order terms that have been neglected due to the truncation of the OPE.
Secondly, it has been necessary to introduce some simple ansatz for parametrizing the spectral
function in the QCD sum rule studies carried out so far. For example, it is most common to assume
the “pole + continuum” functional form, where the pole represents the hadron in question and the
continuum stands for the excited and scattering states that contribute to the spectral function. This
ansatz works well in certain cases, but it may not always be a valid description of the true spectral
function.

The arguments pointed out above indicate that some improved analysis procedure of QCD
sum rules could be useful for obtaining more general results, which are less dependent on a-priori
assumptions. As will be shown in these proceedings, the maximum entropy method (MEM) is
suitable for such a task. This is so because MEM provides the most probable spectral function
directly from the OPE data and their uncertainties, without having to use assumptions about its
explicit form. To verify this claim, we have firsly studied the light vector meson channel with
isospin 1 (containing theρ) as a first test [3]. Then, we have investigated the nucleon channel
with and without parity projection [4, 5], and quarkonium spectral functions at both zero and finite
temperature [6, 7], confirming the usefulness of our novel approach. In this article we will, after
a short account of the MEM procedure and its concrete application to QCD sum rules, review our
obtained results of the light quark sector (ρ meson and nucleon), while the quarkonia channels will
be covered in the article by K. Suzuki of these proceedings.

2. Formalism

2.1 QCD sum rules

In QCD sum rules [1, 2] one makes use of the analytic properties of a general correlator:

Π(q2) = i
∫

d4xeiqx〈0|T[J(x)J†(0)]|0〉. (2.1)

Here, J(x) is some mesonic or baryonic operator, built form quark or/and gluon fields, which
couples to the hadron of interest. The correlator can be rewritten as a dispersion relation, which
connects the imaginary part ofΠ(q) with its values in the deep euclidean region (−q2→∞), where
it is possible to systematically carry out the OPE. This dispersion relation is obtained as:

Π(q2) =
1
π

∫ ∞

0
ds

ImΠ(s)
s−q2 . (2.2)

After calculating the OPE ofΠ(q2), the Borel transformation, symbolically denoted aŝLM, is
applied to both sides of Eq.(2.2), giving the following expression forGOPE(M) ≡ L̂M[ΠOPE(q2)],
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which depends only onM, the so-called Borel mass:

GOPE(M) =
1

M2

∫ ∞

0
dse−s/M2

ρ(
√

s). (2.3)

Here, ImΠ(s) ≡ πρ(
√

s) have been used. Note however that Eq.(2.3) is by no means the only
possible sum rule that can be constructed from the correlator of Eq.(2.1). Using the analyticity,
one can in fact formulate a much more general class of sum rules with an arbitrary kernel [4]. The
virtue of the Borel kernel shown above is that it is simple, strongly suppresses the large-energy part
of the spectral functionρ(

√
s) and improves the convergence of the OPE. However, depending on

the channel to be investigated other kernels might be more suitable. As will be shown later in these
proceedings, this tunred out to be the case in our study of the nucleon channel [4, 5].

As a next step, one usually takes the “pole + continuum” ansatz as a crude parametrization for
the spectral function,

ρ(
√

s)' |λ |2δ (s−m2)+Θ(s−sth)
1
π

ImΠOPE(s), (2.4)

plugs it into the sum rules and carries out some sort of fitting to determine the parameters|λ |2, m
andsth. This procedure works well as long as Eq.(2.4) is a qualitatively correct description of the
physical spectral function, but this is of course not necessarily always the case. Therefore, a more
general analysis method would be desirable, which does not depend on the “pole + continuum”
ansatz of Eq.(2.4). For this purpose we will employ the maximum entropy method (MEM) to
directly extract the spectral function from the sum rules.

2.2 The Maximum Entropy Method (MEM)

In this section, we shortly discuss the essential ideas of the MEM method. For more details,
consult for instance [3, 8, 9].

The problem to be solved with the help of MEM is the following. One is interested in some
functionρ(ω), but has only limited information about an integral overρ(ω):

GOPE(M) =
∫ ∞

0
dωK(M,ω)ρ(ω), (2.5)

whereK(M,ω) is the kernel and corresponds to

K(M,ω) =
2ω
M2e−ω2/M2

(2.6)

in the case of the sum rules of Eq.(2.3). Here, the variableω is defined asω =
√

s. If GOPE(M) is
known only with limited accuracy or is only calculable in a finite range of the Borel massM, the
problem of obtainingρ(ω) from GOPE(M) is ill-posed and cannot be solved analytically.

The MEM approach now makes use of Bayes’ theorem, by which additional information about
ρ(ω) such as positivity and its asymptotic behavior at small or large energies can be incorporated
into the analysis in a systematic way and by which one then can deduce the most probable from of
ρ(ω). Bayes’ theorem is given as

P[ρ|GH] =
P[G|ρH]P[ρ|H]

P[G|H]
, (2.7)
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where the prior knowledge ofρ(ω) is denoted asH andP[ρ|GH] stands for the conditional prob-
ability of ρ(ω) givenGOPE(M) andH. Ignoring the constant termP[G|H] in the denominator as
it does not depend onρ(ω) and maximizing the remaining functional will give the most probable
spectral function.P[G|ρH] is called the “likelihood function” and can be obtained as

P[G|ρH] =e−L[ρ],

L[ρ] =
1

2(Mmax−Mmin)

∫ Mmax

Mmin

dM

[
GOPE(M)−Gρ(M)

]2

σ2(M)
.

(2.8)

GOPE(M) is determined from the OPE of the two-point function andGρ(M) is defined as on the
right hand side of Eq.(2.5). Therefore, it implicitly depends onρ(ω). The functionσ(M) describes
the uncertainty ofGOPE(M) at Borel massM, which stems from our limited knowledge of the
vacuum condensates which appear at higher orders of the OPE and of the fundamental parameters
of QCD, such as the quark masses or the coupling constant.

P[ρ|H] on the other hand is called the “prior probability” and is written down as

P[ρ|H] = eαS[ρ],

S[ρ] =
∫ ∞

0
dω

[
ρ(ω)−m(ω)−ρ(ω) log

( ρ(ω)
m(ω)

)]
,

(2.9)

whereS[ρ] is known as the Shannon-Jaynes entropy. The functionm(ω), introduced in Eq.(2.9)
is the so-called “default model”. In the case of no available dataGOPE(M) or infinitely large error
σ(M), the MEM procedure will just givem(ω) for ρ(ω) because this function maximizesP[ρ|H].
The default model can therefore be used to incorporate known information aboutρ(ω) into the
analysis.

Assembling all the terms discussed, we arrive at the final form for the probabilityP[ρ|GH]:

P[ρ|GH] ∝P[G|ρH]P[ρ|H]

=eQ[ρ],

Q[ρ]≡αS[ρ]−L[ρ].

(2.10)

It is now just a numerical problem to obtain the form ofρ(ω) that maximizesQ[ρ] and is the most
probableρ(ω) given GOPE(M) andH. For this task, the Bryan algorithm [10] has proven to be
efficient in a large number of MEM studies and we use a slightly modified version of it to extract
the spectral functions shown in the following sections.

Onceρα(ω) maximizingQ[ρ] for a fixed value ofα is found, this parameter is integrated out
by averagingρ(ω) over a range of values ofα. The explicit procedure for this step is discussed in
[3]. The result of this last integration then leads to our final resultρout(ω).
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Figure 1: Results of the MEM analysis using OPE data. The dashed lines show the used default model,
while the horizontal bars stand for the values of the spectral function, averaged over the peaks and the
corresponding errors. For the two figures on the right, the lower error bars of the second peak are not shown
because they lie belowρ(ω) = 0.

3. Analysis of theρ-meson sum rule

The explicit calculation ofGOPE(M) for theρ-meson channel leads to:

GOPE(M) =
1

4π2

(
1+η(αs)

)

+
(

2m〈q̄q〉+ 1
12

〈αs

π
G2〉) 1

M4

− 112π
81

αsκ〈q̄q〉2 1
M6 + . . . ,

η(αs) =
αs

π
+0.154α2

s −0.372α3
s + . . .

(3.1)

In the above equationαs represents the strong coupling constant,m is the (averaged) quark mass of
the u- and d-quark, and〈q̄q〉 stands for the corresponding quark condensate. Furthermore, the gluon
condensate

〈αs
π G2

〉
is a shorthand notation for

〈αs
π Ga

µνGaµν〉
, while κ is a parameter expressing

the (potential) breaking of the vacuum saturation approximation, which would giveκ = 1. Various
estimates of the condensate values and their ranges exist, and we have used those given in three
recent reviews: [11, 12, 13]. The explicit values can be found in [3].

The MEM analysis ofGOPE(M) was carried out using the default model

m(ω) =
1

4π2

(
1+

αs

π

) 1

1+e(ω0−ω)/δ , (3.2)

with ω0 = 2.0 GeV andδ = 0.1 GeV, which leads to reasonable results at both low and high energy.
For a detailed discussion concerning this specific choice, see again [3]. Here, we just mention that
the above default model is constructed to have the physically correct behavior at both low and high
energy. As the sum rules used here do not contain much information on the spectral function at
very low (aroundω = 0) and high (ω & 3 GeV) energy, this kind of default model is necessary for
the MEM output to behave reasonably in these energy regions. The results are shown in Fig.1.
It clearly seen that all three data sets give a significant lowest peak, corresponding to theρ-meson
resonance. Next, fitting the spectral functions of Fig.1 to a relativistic Breit-Wigner peak plus a
second order polynomial background, we determine the coupling strengthFρ from our obtained
spectral function. All these results are summarized in Table1.
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Table 1: The final results for the three employed parameter sets. The errors were determined from a MEM
test analysis of mock data.

Colangeloet al. [11] Narison [12] Ioffe [13] Experiment

mρ 0.76±0.07 GeV 0.84±0.12 GeV 0.84±0.10 GeV 0.77 GeV
Fρ 0.174±0.039 GeV 0.190±0.053 GeV 0.187±0.050 GeV 0.141 GeV

4. Analysis of the parity projected nucleon sum rule

In QCD sum rules of the nucleon channel, it has been proposed to consider the “old fashioned”
correlation function for properly implementing the parity projection [15]:

Πfor(q0) = i
∫

d4xeiqxθ(x0)〈0|T[η(x)η(0)]|0〉
∣∣∣
~q=0

≡ γ0Πfor
1 (q0)+Πfor

2 (q0),
(4.1)

whereη is an interpolating field carrying the quantum number of the nucleon. Using the parity
projection operatorsP± ≡ 1

2(γ0±1), one can construct a correlator that contains contributions of
only positive or negative parity states, as

1
2

Tr
[
P±Πfor(q0)

]
= Πfor

1 (q0)±Πfor
2 (q0)≡Π±(q0)

=−
∫ ∞

0
ρ±(m)

1
q0−m+ iε

dm.
(4.2)

Making use of the fact that the forward correlator is analytic in the upper half of the complexq0

plane, we then get the parity projected sum rule:
∫ ∞

−∞
dq0

1
π

Im
[
Π ±

OPE(q0)
]
W(q0) =

∫ ∞

0
dq0ρ±Phys.(q0)W(q0). (4.3)

Here,Π ±
OPE(q0) is calculated by the OPE in the deep Euclidean region,ρ±Phys.(q0) stands for the

physical spectral function of positive and negative parity andW(q0) is an arbitrary analytic function
in the upper half of the imaginary plane and real on the real axis.

Although the contributions of both parity states are now separated, we face further problems
such as the largeαs corrections and large contribution of the continuum, which lower the reliability
of the sum rule analysis [16]. Following the method proposed by Ioffe and Zyablyuk [17], who
have constructed a new class of sum rules by using the phase rotated complex variableq2eiθ instead
of the realq2, it is however possible to improve this situation. One advantage of this approach lies
in its ability to suppress certain terms of the OPE by choosing some specific value ofθ . To apply
the above idea to the parity projected sum rules, we use the phase-rotated kernel:

W(q0,s,τ,θ)dq0 =
1√
4πτ

Re

[
q0e−iθ exp

(
−(q2

0e−2iθ −s)2

4τ

)
e−iθ dq0

]
. (4.4)

With this kernel we obtain the specific form ofGfor ±
OPE (s,τ,θ) which is defined as the left hand side

of Eq.(4.3) [4]:

Gfor ±
OPE (s,τ,θ) =

(
C0 +

αs

π
C0αs(θ)

)
cos5θ +C4〈αs

π
G2〉cosθ + · · ·

±
[
(C3 +

αs

π
C3αs)〈qq〉cos2θ +C5〈qgσ ·Gq〉+ · · ·

]
,

(4.5)

6
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Figure 2: (a) Gfor ±
OPE (s,τ), dimension 0 (perturbative) and dimension 3 (chiral condensate) terms atτ =

0.5[GeV4] andθ = 0. The thick lines denoteGfor ±
OPE (s,τ) and the thin lines are the dimension 0 and 3 terms.

(b) Same as for (a), but forθ = 0.108π.

whereC0, C0α(θ), C3, C3αs, C4 andC5 are numerical coefficients. Choosing a suitable value for the
phaseθ , the ratio ofαs corrections to leading terms at dimension 0 (C0αs

C0
) is reduced significantly.

Specifically this is ratio is suppressed from 90 % atθ = 0 to 5 % atθ = 0.108π. The perturbative
and chiral condensate terms andG±(s,τ) at θ = 0 andθ = 0.108π are given in Fig.2. It can be
seen in the figure that in the phase rotated sum rule, the contribution of the perturbative term is
strongly reduced and the〈qq〉 term is dominant. We also find that the difference of the OPE data
between the positive parity and negative parity states is caused by the chiral condensate in Fig.2.

Carrying out the analysis using the OPE dataGfor ±
OPE (s,τ,θ = 0.108π) with the help of MEM,

we obtain the corresponding spectral functions. The results are shown in Fig.3. In the positive
parity spectral function, peaks are found at 970 MeV and 1930 MeV. As can be inferred from the
error bars, the lowest peak which corresponds to the nucleon ground state is statistically significant,
while the second one is not. For negative parity, peaks appear at 1540 MeV and 1840 MeV. As for
the positive parity case, the second peak is not statistically significant. The lowest peak appears
close to the experimentally observed lowest negative parity state N(1535). However, we can not
conclude that this peak only contains the contribution of the N(1535) due to its large width and
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Figure 3: The positive (left) and negative parity (right) spectral functions extracted from MEM analyses of
the OPE dataGfor ±

OPE (s,τ,θ = 0.108π). The parity of the corresponding spectral functions is shown on the
top right corner of each figure.
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the next lying state N (1650). Related to this topic, it is important to note that the MEM analysis
only has a limited resolution and thus will generate some artifical width to any peak and generally
only give smeared output spectral functions. This fact could cause the N(1650) to merge with the
N(1535), leaving only a single peak. Therefore our conclusion to be drawn from this analysis is
that some negative parity excited state exists near 1540 MeV.

5. Summary and conclusions

The MEM technique has been applied to QCD sum rules for theρ-meson and nucleon chan-
nels, showing that this novel approach makes it possible to extract the spectral functions from
the sum rules without making strong assumptions about their explicit form. These findings are
promising and encourage us to expand this method to other channels and to the investigation of the
properties of hadrons at finite temperature or density.
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