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We report on a recent determination of the bottom quark mass from nonrelativistic (large-n) ϒ

sum rules with renormalization group improvement (RGI) at next-to-next-to-leading logarithmic
(NNLL) order. The comparison to previous fixed-order analyses shows that the RGI computed in
the vNRQCD framework leads to a substantial stabilization of the theoretical sum rule moments
with respect to scale variations. A single moment fit (n = 10) to the available experimental data
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b = 4.755±0.057pert±0.009αs ±0.003exp GeV for the bottom 1S mass and mb(mb) =
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perturbative error and the uncertainties associated with the strong coupling and the experimental
input.

Xth Quark Confinement and the Hadron Spectrum,
October 8-12, 2012
TUM Campus Garching, Munich, Germany

∗preprint DESY 13-008
†Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:maximilian.stahlhofen@desy.de


P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
1
6
4

Bottom Mass from Nonrelativistic Sum Rules at NNLL Maximilian Stahlhofen

1. Introduction

Determinations of the bottom quark mass mb have been the subject of a large number of QCD
precision studies in the past. For a summary we refer to Ref. [1]. The bottom mass is an important
parameter in numerous theoretical predictions not only within, but also beyond the standard model.

The data from e+e− collisions is the common experimental input in many determinations of
mb, because in particular the region close to the bb̄ threshold and the ϒ resonances of the total cross
section are very sensitive to the bottom mass parameter. One classic approach is based on the sum
rule [2] that states the equality of the experimental moment

Pexp
n =

∫
∞

0

ds
sn+1 Rbb̄(s) , (1.1)

where Rbb̄ = σ(e+e− → bb̄ + X)/σpt is the measured inclusive (hadronic) bottom pair produc-
tion cross section normalized by σpt = 4πα2/3s, and the corresponding theoretical expression Pth

n

obtained from an operator product expansion (OPE) in QCD. For not too large n nonperturbative
power corrections to Pth

n are suppressed and the theoretical prediction is dominated by the perturba-
tive QCD (pQCD) result for an external bottom quark pair. Concerning the appropriate theoretical
formalism bottom mass determinations from the equation Pth

n (mb) = Pexp
n differ depending on the

values for n. We distinguish two classes.
For n <∼ 3 the theoretical moment Pth

n is governed by fluctuations at the scale mb. Therefore
higher order terms in the OPE typically scale like powers of ΛQCD/mb and the conventional pQCD
result is in principle sufficient for a precise determination of the bottom mass. Recent low-n analy-
ses [3, 4] employ an approximate four-loop pQCD calculation. Ref. [5] uses a related variant of this
method, where the integration in Eq. (1.1) is only carried out over a finite range and a compensating
term (according to Cauchy’s theorem) is added to the theory prediction. Both low-n approaches
have the drawback that precise experimental data is currently only available in the region close to
the production threshold (and for the ϒ resonances) and this deficiency has to be compensated by
additional theory input in one way or the other1, see e.g. Refs. [6, 4] for discussions on the cor-
responding uncertainties. Power corrections to the additional theory contribution2 in the moments
are commonly assumed to be small.

On the other hand large-n moments, where 4 <∼ n <∼ 10, receive only negligible contributions
from the energy regions beyond threshold and are dominated by the experimentally well-known
ϒ-resonances and hence nonrelativistic bound state dynamics. The corresponding sum rules are
therefore often called nonrelativistic or ϒ sum rules. Due to the nonrelativistic nature of the large-n
moments in addition to the hard scale mb the soft scale mb/

√
n and the ultrasoft scale mb/n emerge

as relevant short-distance scales and the convergence of the OPE requires the upper limit n <∼ 10.
The hierarchy between these scales induces sizable terms ∝ (αs

√
n)k, the so-called Coulomb sin-

gularities, and large logarithms ∝ (αs ln(n))l in the perturbative loop expansion. The resummation

1In fact the finite energy sum rule used in Ref. [5] is equivalent to an infinite energy sum rule, if in the range
above the finite energy limit the theory result is used for the total cross section Rbb̄ in Eq. (1.1) and the infinite moment
integration converges.

2related to the fact that the energy integration contour needs to be deformed onto the positive real axis close to the
finite energy cutoff
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of the Coulomb singular terms to all orders can be performed within the effective field theory
NRQCD [7, 8]. Extensions of this framework like the pNRQCD [9, 10] and the vNRQCD [11]
formalism also allow the systematic resummation of the logarithmic terms. The renormalization
group improved (RGI) result for the theoretical large-n moments is expressed as a simultaneous
expansion in αs and 1/

√
n and schematically takes the form

Pn ∼ ∑
k,l

(αs
√

n)k(αs ln(n))l
[
1(LL); αs,1/

√
n (NLL); α

2
s ,αs/

√
n,1/n (NNLL); . . .

]
(1.2)

for the leading logarithmic (LL), next-to leading logarithmic (NLL) and next-to-next-to leading
logarithmic (NNLL) order. Prior to the work presented here the RGI bottom mass determination
from large-n sum rules reached NLL and partly NNLL level [12, 13], but did not include the NNLL
running of the dominant heavy quark pair production current. Earlier fixed-order analyses [14, 15,
16, 17, 18, 19] up to next-to-next-to-leading order (NNLO) only resum the Coulomb singularities
and count (αs ln(n))l as α l

s in Eq. (1.2). The convergence of the fixed-order expansion however
turned out to be rather unsatisfactory, see Ref. [20] for a review. As we will show below RGI
computations improve the convergence properties substantially and allow for a reliable and precise
determination of the bottom quark mass from nonrelativistic sum rules.

For any determination of the bottom mass parameter with a precision at the percent level it is
mandatory to adopt an appropriate short-distance mass-scheme in order to avoid O(ΛQCD) infrared
renormalon ambiguities. Suitable mass schemes are the MS scheme for the low-n sum rules and
so-called threshold mass-schemes [21, 22, 23, 24] for the large-n sum rules.

The present talk focuses on the determination of the 1S bottom mass [22] from RGI large-n
sum rules and is mostly based on the recently published Ref. [25]. In this analysis single moment
fits of the mass parameter are carried out including for the first time the almost complete NNLL
correction to the theoretical moments. The still missing contribution from the NNLL soft mix-
ing correction to the running of the heavy quark production current can be neglected under the
assumption that its size is comparable to the already known soft NNLL terms.

2. Experimental Moments

The dominant contribution (87% - 98% for n = 6-12) to the experimental moments in Eq. (1.1)
for large n comes from the first four ϒ resonances, ϒ(1S)-ϒ(4S), which we construct from their
electromagnetic decay widths and masses [1] using the narrow width approximation. For the con-
tribution from the threshold region (5.7% - 1.4% for n = 6-12) we use BABAR data [26] in the
energy range between

√
s = 10.62 and

√
s = 11.21 and follow the approach of Ref. [27]. Finally

the continuum region above 11.21 GeV contributes only a tiny fraction. It can be modelled by
the respective pQCD result [28] assigning a model uncertainty of 10% to the cross section with-
out introducing a numerically relevant error to the experimental moments. We emphasize that this
continuum contribution should be regarded as a rough estimate for the (missing) experimental data
rather than an additional theory input. The precise numbers for the relevant experimental moments
together with their statistical and systematical errors can be found in Ref. [25].
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3. Theoretical Moments at NNLL

For details on the derivation of the theoretical moments according to the scheme in Eq. (1.2)
we refer to Refs. [14, 15, 18, 25]. The resummation of nonrelativistic logarithms follows the vN-
RQCD approach [25]. Here we shall only discuss the general structure and the latest computational
progress concerning the RGI of the theoretical large-n moments. The theory prediction for the nor-
malized total bb̄ pair production cross section Rbb̄(s) in the threshold region is due to the optical
theorem related to nonrelativistic current-current correlators, which describe the production and an-
nihilation of a heavy quark pair. Explicit results for these correlators can be adopted from previous
works on t t̄ threshold production in e+e− collisions [29, 30, 31, 32]. After the moment integration
over s the result for the n-th moment through NNLL order can be expressed as

Pth,NNLL
n =

3Nc Q2
b
√

π

4n+1(Mpole
b )2n n3/2

{
c1(h,ν)2

ρn,1(h,ν)+2c1(h,ν)c2(h,ν)ρn,2(h,ν)
}

, (3.1)

where the ρn,i arise from the integration of the nonrelativistic current correlators and the ci are
Wilson coefficients of the respective effective currents. The variables h and ν are introduced to
parametrize the matching and renormalization scales of the effective theory. The natural choice is
h∼ 1, ν ∼ 1/

√
n. The residual dependence of the bottom mass fit on these parameters is used for

the perturbative error estimate in Sec. 4.
Equation (3.1) explicitly depends on the bottom pole mass Mpole

b , which we translate to the 1S
mass M1S

b using the relation

Mpole
b = M1S

b {1+∆
LL +∆

NLL +[(∆LL)2 +∆
NNLL
c +∆

NNLL
m ]} . (3.2)

The ∆ terms are labeled according to the nonrelativistic order counting scheme in Eq. (1.2). Explicit
expressions can be found in Ref. [30]. For the final theoretical expression used in the single moment
fits below we consistently expand out the perturbative series for the Wilson coefficients ci together
with the nonrelativistic expansion series for the ρn,i and Mpole

b in Eq. (3.1).3 The convergence
properties of this expansion are discussed in detail in Ref. [25].

Apart from the NNLL correction to the renormalization group (RG) running of the Wilson
coefficient c1 associated with the dominant heavy quark production current all relevant contribu-
tions to Eq. (3.1) are known completely. Concerning the NNLL running of c1 all (“non-mixing”)
contributions from genuine vNRQCD three-loop diagrams were computed in Ref. [32]. The cor-
responding pNRQCD calculation is not available at present. The remaining NNLL (“mixing”)
contributions are generated by corrections to the vNRQCD four-quark operator (“potential”) co-
efficients appearing in the NLL anomalous dimension of c1. Recent results for the ultrasoft NLL
running of the subleading (O(v) and O(v2)) nonrelativistic quark-antiquark potentials [33, 34, 35]
completed the calculation of the ultrasoft part of the NNLL mixing contributions [34]. It is the
dominant NNLL mixing effect [36, 25] in the running of c1. Likewise the ultrasoft terms dominate
the NNLL non-mixing running [32]. Thus at present the only unknown piece in Pth,NNLL

n is the
NNLL soft mixing contribution to the RG evolution of c1.

3We are forced to simultaneously expand out the series for Mpole
b and the ρn,i in the way explained in Ref. [18] in

order to achieve a proper cancellation of the leading renormalon.
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Figure 1: RG evolution of the current coefficient c1: NLL (blue) and approximate NNLL result (red) with
uncertainty due to the unknown NNLL soft mixing contribution (light red band).

Figure 1 shows the dependence of the current coefficient c1(ν) ≡ c1(h = 1,ν) on the renor-
malization parameter ν for the complete NLL result (blue) and an approximate NNLL result (red),
where all known NNLL contributions4 are added. The (light red) band around the NNLL curve is
generated by varying all known soft NNLL contributions to that curve by a factor between 0 and
2. The uncertainty due to the unknown NNLL soft mixing terms estimated by this band is much
smaller than the large total NNLL correction from the running in the relevant range 0.3 . ν . 0.6
and can safely be neglected in the following [25].

The (known) leading nonperturbative power correction to the moment Pth,NNLL
n is associated

with the gluon condensate [14] and turns out to be completely negligible for our analysis [25].
Higher order power corrections are sufficiently suppressed for n . 10.

4. Single Moment Fits

The vNRQCD expression for the theoretical moment Pth,NNLL
n exhibits a residual dependence

on the scale µh = hmb, where the effective theory is matched to full QCD, as well as on the two
correlated renormalization scales µS = hmbν (soft) and µU = hmbν2 (ultrasoft). Here and in the
following mb ≡ M1S

b . The three unphysical scales can be consistently parametrized by the two
variables h and ν . In order to estimate the uncertainties from higher order perturbative corrections
we choose to vary the parameters for the bottom mass fits within the h-ν region around the default
values ν = ν∗ := 1/

√
n+0.2 and h = 1 as defined in Fig. 2 a. The plot also shows the contours of

the result for M1S
b from the equation Pth

10(M
1S
b ) = Pexp

10 , i.e. a NNLL single moment fit for n = 10.
With these conventions for the h-ν scaling variations we can now generate error bands around

the default fits (dashed lines) for M1S
b (αs) as shown in Fig. 3. The two panels in this figure compare

the fits of the bottom mass as a function of the strong coupling αs(MZ) using theoretical moments
calculated in the fixed-order (a) and the RGI approach (b). The fixed-order moments are obtained
by switching off the all-order resummation of nonrelativistic logarithms in our RGI moments as
explained in Ref. [25]. Since at leading order (LO) the only relevant physical scale is the soft scale

4These even include the first logarithm ∝ α3
s lnν in the NNLL series of the soft mixing contribution [32]. The

subset of spin-dependent terms in the NNLL soft mixing contribution is also known [37], but tiny and neglected here.
All relevant analytic NNLL expressions for c1 are given in Ref. [25].

5
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Figure 2: Panel a): Contour plot of the 1S bottom mass determined from Pth
10(mb) = Pexp

10 as a function of
the parameters h and f ≡ ν/ν∗. The different contours are labeled by the respective mass value in GeV. The
region in the h- f plane bounded by the red dashed line represents the parameter space we scan to determine
the variation of the mass, which contributes to our perturbative error estimate. The region is defined by
0.75 ≤ h ≤ 1/0.75 and demanding that 0.5 µ∗U ≤ µU ≤ 2 µ∗U , where µ∗U = mbν2

∗ . The red point inside this
area indicates our default values f = h = 1 for the mass determination. Panel b): 1S mass results (dots) with
perturbative error bars from single moment fits for n = 4 to n = 20 as explained in the text.

the LO and LL bands in Fig. 3 agree exactly. Comparing the next-to-leading (NLO) with the NLL
and in particular the NNLO with the NNLL results we however observe much larger scale vari-
ations of the fixed-order results. This clearly indicates a substantially improved precision related
to the resummation of logarithms in the RGI approach. As argued in Ref. [25] we believe that in
contrast to the LL band, which is generated only by soft scale variations, and the (w.r.t. the default
fits) strongly asymmetric NLL error bands the NNLL mass range gives a reliable estimate of the
perturbative uncertainty. The observed bottom mass dependence on the input value for αs(MZ) is
rather mild and at least in the interval 0.113≤αs(MZ)≤ 0.120 linear to a good approximation [25].
A far more detailed analysis of the numerical results including plots of Fig. 3 b type for different
values of n as well as multiple moment fits has been carried out in Ref. [25].

The final result for the 1S bottom mass from the NNLL RGI single moment analysis for n = 10
outlined above is

M1S
b = 4.755 ± 0.057pert ± 0.009αs ± 0.003exp GeV , (4.1)

where we have used the current world average αs(MZ) = 0.1183± 0.0010 for the strong cou-
pling [38]. The central value in Eq. (4.1) corresponds to the result of the default fit (h = 1, ν = ν∗).
The quoted errors refer to the perturbative uncertainty, which we estimate by half the size of the
band from the scale variations, and the errors from the uncertainties of αs and the experimental
data used for the fit.

Figure 2 b compares the M1S
b results and their respective perturbative error bars from fits using

the moments n = 4 to n = 20. Within the errors all central values are in very good agreement.
We however emphasize that for n considerably larger than 10 formally the OPE for the theoretical
moments breaks down due to possibly uncontrolled higher order power corrections, although the

6
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Figure 3: Comparison of the masses obtained from the fixed order (a) and RGI calculation (b) of the 10-th
moment, Pth

10(mb) = Pexp
10 . In panels a and b we show the mass values with LO, NLO, NNLO and LL, NLL,

NNLL accuracy, respectively. The dashed lines display the results from the fits with the default values for
the parameters h and ν . The corresponding (partly overlapping) error bands were generated by varying h and
ν within the parameter space defined in Fig. 2 a. (We also added the tiny experimental error in quadrature,
which is however hardly visible.) Concerning panel a, we note that for some low mb values in the NLO
band and the associated values for h and ν the ultrasoft coupling αS(µU ) reaches 0.65 causing numerical
instabilities.

leading power correction still appears to be small as long as n . 20. We therefore regard the
error bars for n > 10 shown in Fig. 2 b as a confirmation of the perturbative stability of the RGI
vNRQCD calculation, but do not use them for quoting our final errors. On the other hand the error
bars for n < 10 increase for smaller n because the sensitivity of the theoretical moments on the
mass decreases [25], cf. Eq. (3.1).

Using the respective (fixed-order) relations to the pole mass, see Refs. [18, 19] for details, we
can translate the 1S mass result in Eq. (4.1) to the MS-mass and obtain

mb(mb) = 4.235 ± 0.055pert ± 0.003exp GeV , (4.2)

where we have added an additional conversion error of 15 MeV to the perturbative uncertainty [25].
Interestingly the αs dependence of the original 1S mass result in Eq. (4.1) and the intrinsic αs

dependence of the 1S-MS conversion formula almost cancel exactly. The remaining αs induced
error is therefore negligible and not quoted in Eq. (4.2).

5. Summary

We have presented the determination of the 1S bottom mass from (single) large-n moment
fits with RGI at NNLL order as carried out in Ref. [25]. The main result is given in Eq. (4.1).
Converted to the MS scheme our result (Eq. (4.2)) is consistent with the NLL RGI large-n result of
Ref. [12], but not quite compatible with the latest results from low-n sum rule determinations [3, 5].
We however note that our calculation (like Ref. [12]) treats the charm quark as massless, while
previous fixed-order analyses [39, 19] have shown that finite charm mass effects are enhanced for
large n and cause a sizable mass shift between −20 and −30 MeV. A similar effect is expected in
the RGI analysis and might help to reconcile the discrepancy.
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