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We revisit the center-symmetric dimensionally reduced effective theory for two-color Yang-Mills
theory at high temperature. This effective theory includes an order parameter for deconfinement
and thus allows to broaden the range of validity of the conventional three-dimensional effective
theory (EQCD) towards the confining phase transition. We extend the previous results by includ-
ing the effects of massive quarks with nonzero baryon chemical potential. The parameter space
of the theory is constrained by leading-order matching to the Polyakov loop effective potential
of two-color QCD. Once all the parameters are fixed, the effective theory can provide model-
independent predictions for the physics above the deconfinement transition, thus bridging the gap
between large-scale numerical simulations and semi-analytical calculations within phenomeno-
logical models.
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Center-symmetric effective theory for two-color QCD

Understanding the phase diagram of quantum chromodynamics (QCD) is a major challenge
for current particle physics. Partial information can be obtained using ab initio numerical simu-
lations on the lattice, which are complemented by experimental data from relativistic heavy-ion
collisions. However, both of these approaches are constrained to the region of low net baryon den-
sity, in the case of lattice simulations due to the infamous sign problem, and in the case of heavy-ion
collisions as a result of the particular experimental set-up. The interpretation of the latter is further
complicated by the fact that what one observes is a strongly non-equilibrium system. In addition,
astrophysical observations can provide some input on the region of the phase diagram correspond-
ing to low temperature and moderate density. (What is low and what is high is determined by the
characteristic energy scale of the strong interaction, ΛQCD ' 300 MeV.)

Analytic first-principle approaches are invariably based on series expansion in a given small
parameter, and thus provide reliable computation schemes only in specific limits. In the case of the
chiral perturbation theory, the expansion parameter is momentum or energy, and its applicability is
therefore limited to the low-temperature and low-density corner of the phase diagram. On the other
hand, there are several thermal field theory methods, such as perturbation theory and its various
modifications, that are based on expansion in the QCD coupling g, and hence are limited to very
high temperatures. Model approaches can in principle cover the whole phase diagram. Their main
disadvantage lies in the fact that they by construction cannot reproduce all features of QCD.

From the above, it is clear that existing first-principle analytic calculations and lattice simu-
lations are complementary, in both the range of applicability and the computation effort. In this
contribution, we report on an attempt to bridge the gap between them. We construct an approach
that is semi-analytic and, by exploiting the symmetry of QCD, has a range of validity that extends
down to the critical temperature for (de)confinement. It thus has the potential to provide a link
between the perturbative methods and lattice simulations.

1. Introduction

Our approach is based on three main ingredients that will be briefly introduced below: dimen-
sional reduction, center symmetry, and two-color QCD. In the imaginary time formalism, thermal
gluons acquire an effective mass equal to 2πnT where n is an integer and T the temperature. At
very high temperature, the n = 0 mode is the only one that does not have a parametrically large
mass. The original four-dimensional field theory then reduces to a three-dimensional theory for
this soft mode, a fact usually dubbed dimensional reduction.

In a pure gauge SU(N) theory, the (de)confinement is a genuine phase transition. This transi-
tion is associated with the change of symmetry of the system. In the high-temperature, deconfined
phase the center symmetry is spontaneously broken, while in the low-temperature, confined phase it
is restored. The corresponding order parameter is provided by the expectation value of the Polyakov
loop. In presence of dynamical quarks, the center symmetry is violated, yet it is known to still play
an important role in the dynamics of the transition.

For technical reasons to be explained later, we restrict our attention to Yang–Mills theory with
two colors and quarks in the fundamental representation, in short two-color QCD. The deconfine-
ment phase transition in the SU(2) Yang–Mills theory is known to be second order, and the Z2

center symmetry thus plays a key role, leading to critical behavior in the correct universality class.
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Center-symmetric effective theory for two-color QCD

The generalization of our construction to the real, three-color QCD is in principle straightforward,
the only obstacle being the large number of free parameters in the effective theory that need to be
determined by perturbative matching.

1.1 Dimensional reduction

In the imaginary time formalism, quantum field theory at nonzero temperature can be thought
of as a theory with the temporal dimension compactified to a circle with circumference 1/T . The
spectrum then consists of a Kaluza–Klein tower of modes. At very high temperature, all nonzero
Matsubara modes can be integrated out, resulting in a purely three-dimensional effective theory
for the zero modes of the bosonic fields. (Fermions do not have any zero modes and thus are
completely integrated out.)

In the context of QCD, the resulting effective theory is called Electrostatic QCD (EQCD) and
has been investigated in detail in refs. [1, 2]. Its degrees of freedom are the spatial gluon Aa

i and
the temporal gluon Aa

0 that transforms under three-dimensional gauge transformations as an adjoint
scalar. Due to thermal fluctuations, this mode acquires a nonzero screening (Debye) mass of the
order gT , where g is the four-dimensional gauge coupling. The resulting EQCD Lagrangian reads,
to the lowest order,

LEQCD =
1
4
(Fa

i j)
2 +

1
2
(DiAa

0)
2 +

1
2

m2
E(A

a
0)

2 +
1
8

λE(Aa
0Aa

0)
2, (1.1)

where Di ≡ ∂i− i[Ai, ·] is the covariant derivative. The parameters of the effective Lagrangian can
be determined by a direct perturbative matching. For Nf flavors of massless quarks in two-color
QCD, they take the form

m2
E =

2g2T 2

3

(
1+

Nf

4

)
, λE =

2g4T
3π2

(
1− Nf

8

)
. (1.2)

Analytic expressions for quarks with arbitrary masses are available in ref. [3].

1.2 Center symmetry

Center symmetry is a global ZN symmetry of the thermal SU(N) Yang–Mills theory associated
with the nontrivial topology of the compactified spacetime. The corresponding order parameter is
given by the Polyakov loop,

Ω(xxx)≡P exp
[

ig
∫

β

0
dτ A0(τ,xxx)

]
. (1.3)

At high temperatures when the center symmetry is spontaneously broken, the expectation value of
the Polyakov loop is localized around one of N physically equivalent equilibrium states, related
to one another by ZN transformations. The EQCD Lagrangian (1.1) is based on an expansion in
powers of Aa

0 and hence violates the center symmetry. This is appropriate at very high temperatures
when the tunneling transitions between different ZN states are strongly suppressed. However, as
the temperature decreases towards the confinement transition, fluctuations of the Polyakov loop
become important and picking just one of the degenerate equilibrium states is no longer a good
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Center-symmetric effective theory for two-color QCD

approximation. This is one of the reasons why EQCD fails at temperatures near the confinement
transition.

In order to extend the range of applicability of the analytic weak-coupling methods to lower
temperatures, a formalism was proposed in refs. [4, 5, 6] which preserves center symmetry explic-
itly. This center-symmetric dimensionally reduced effective theory (ZQCD) should be understood
as an improvement of EQCD. As the low-energy degree of freedom containing the screened soft
modes, the temporal gluon Aa

0 is replaced with the Polyakov loop, smeared over a length scale of
order 1/T . In refs. [4, 5], the formalism was worked out for the pure gauge SU(3) Yang–Mills
theory, while in ref. [6] it was applied to the case of two colors. The main aim of this contribution
is to extend the effective theory by incorporating the effects of dynamical quarks with arbitrary
masses and chemical potentials.

1.3 Two-color QCD

Two-color QCD is not only a simpler cousin of the real, three-color QCD; it is attractive for
several reasons. First, it does not suffer from the sign problem and thus is amenable to lattice
simulations at nonzero chemical potential [7]. Second, at high baryon density, its thermodynamics
is, like in three-color QCD, driven by the Fermi sea of quarks, while the low-energy physics is
governed by Cooper pairing of quarks near the Fermi surface. Unlike in the three-color case,
however, the Cooper pair is a color singlet and thus provides a gauge-invariant order parameter:
cold and dense two-color QCD is a baryonic superfluid.

The last observation has far-reaching consequences also for the low-density thermodynamics
and even for the structure of the vacuum. The fact that two quarks can form a color singlet state
means that baryons in two-color QCD are bosons. The onset of nonzero baryon density (at zero
temperature) is thus marked by Bose–Einstein condensation of diquark baryons rather than by
the appearance of a Fermi sea of nucleons. This among others implies dramatic simplification of
models for “nuclear physics”; one avoids the complications of three-body physics in nuclear matter.

On the level of the Lagrangian, the above properties follow from the Pauli–Gürsey symme-
try between quarks and antiquarks [8]. This results in the embedding of the usual chiral group
SU(Nf)L×SU(Nf)R×U(1)B in a simple flavor symmetry group SU(2Nf). This naturally includes
symmetry transformations that change baryon number so that the multiplets of the symmetry con-
tain the baryonic diquarks as well as mesons. In the past decade, much effort has been devoted to
the understanding of the phase structure of two-color QCD using lattice simulations [7], effective
field theory [9], as well as model calculations [10]. We complement the existing results by pro-
viding a framework for investigating the thermodynamics of two-color QCD at high and moderate
temperatures and low density.

2. Center-symmetric effective theory

As emphasized above, we aim at constructing an effective theory for two-color QCD which
preserves the Z2 center symmetry and at the same time reduces to EQCD at high temperature where
the effects of center symmetry are negligible. Moreover, we demand for purely technical reasons
that the theory be superrenormalizable. This leads to technical simplifications when simulating the
nonperturbative magnetic part of the theory on the lattice [5, 6]. The relevant parameters of the

4



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
1
8
1

Center-symmetric effective theory for two-color QCD

theory will be fixed by perturbative matching. We review the construction of the theory according
to ref. [6], taking into account the effects of dynamical quarks.

The degrees of freedom of ZQCD are the spatial gluon Aa
i (xxx) and the coarse-grained Polyakov

loop field Z (xxx). They undergo the usual gauge transformations

Z (xxx)→U(xxx)Z (xxx)U(xxx)†, AAA(xxx)→U(xxx)[AAA(xxx)+ i∇∇∇]U(xxx)†, (2.1)

where U(xxx) ∈ SU(2). In addition, the Z field is subject to the center symmetry transformation as
Z (xxx)→±Z (xxx). The technical simplification particular to the SU(2) group is that a linear com-
bination of unitary matrices is unitary up to an overall factor. Thus, the coarse-grained Polyakov
loop Z (xxx) can be parameterized as

Z (xxx) =
1
2
[Σ(xxx)+ iσaΠa(xxx)], (2.2)

where σa are Pauli matrices while Σ and Πa are real scalar fields. The SU(2) adjoint field Πa

corresponds to the light adjoint field Aa
0 in EQCD, while Σ encodes fluctuations in the magnitude

of the Polyakov loop and is expected to get a mass of the order of the temperature.
The most general Lagrangian density with operators up to fourth order in the fields, consistent

with the three-dimensional gauge invariance and rotational invariance, takes the form

L =
1
g2

3

[
1
2

TrF2
i j +Tr

(
DiZ

†DiZ
)
+V (Z )

]
, (2.3)

where g3 is the gauge coupling in the dimensionally reduced theory and the potential V (Z ) reads

V (Z ) = b1Σ
2 +b2Π

2
a + c1Σ

4 + c2(Π
2
a)

2 + c3Σ
2
Π

2
a +d1Σ

3 +d2ΣΠ
2
a. (2.4)

Note that the d1,2 operators explicitly break the Z2 center symmetry, and thus incorporate the ef-
fects of dynamical quarks. Of course, the presence of quarks also affects the values of the center-
preserving couplings in the Lagrangian.

As stressed above, we expect the masses of Σ and Πa to be parametrically of different orders,
T and gT , respectively. To achieve this, we rewrite the potential V (Z ) as

V (Z ) = h1 Tr(Z †Z )+h2(TrZ †Z )2 +g2
3

[s1

2
Π

2
a +

s2

4
(Π2

a)
2 + s3Σ

4 +
s4

2
Σ

3 +
s5

2
ΣΠ

2
a

]
. (2.5)

The “hard” part of the potential now has an extended SU(2)L×SU(2)R symmetry. This is sponta-
neously broken by the nonzero expectation value of Z in the high-temperature phase where center
symmetry is broken. The Πa are interpreted as the corresponding pseudo-Nambu–Goldstone modes
that only acquire nonzero mass from the “soft” part of the potential.

2.1 Perturbative matching

In order to fix the parameters of the effective theory, we have to compare its predictions with
those of the full theory, two-color QCD. To that end, we keep only the physical degrees of freedom
Πa and integrate out the auxiliary mode Σ. To the order that we are interested in, this can be done
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Center-symmetric effective theory for two-color QCD

simply by using its equation of motion. The result is to be compared to the one-loop effective
potential for the Polyakov loop in the full theory [11],

Veff(Πa) =
4
3

π
2T 4

〈
g|ΠΠΠ|
2πT

〉2(
1−
〈

g|ΠΠΠ|
2πT

〉)2

+

+
4T 2

π2

Nf

∑
j=1

m2
j

∞

∑
n=1

(−1)n

n2 K2(nβm j)cosh(nβ µ j)cos
ng|ΠΠΠ|

2T
,

(2.6)

where the angular brackets denote the integer part. The masses m j and chemical potentials µ j of
the individual quark flavors can in principle be arbitrary. However, the above infinite series only
converges provided µ j < m j for all flavors.

Apart from the effective coupling g3, which is to the leading order determined by its counter-
part in the full theory as g2

3 = g2T , the effective potential (2.5) contains altogether seven unknown
parameters, namely h1,2 and s1–5. One combination of the hard parameters is determined by the
size of the Σ condensate in the effective theory, v0 = 2T , which to the leading order leads to the
constraint h1 + 4T 2h2 = 0. The other hard parameter cannot be found by perturbative matching
and has to be fixed by nonperturbative lattice simulation [6]. Fortunately, it has, as expected, little
influence on the physics at the soft scale gT .

Among the five soft parameters, two linear combinations of s1–3 are obtained by matching
to the EQCD Lagrangian (1.1). This is equivalent to comparing the coefficients of the Taylor
expansion of the Weiss potential (2.6) around zero. This leads to the constraints

m2
E = g2

3

(
s1−4s3v2

0−
3
2

s4v0 + s5v0

)
, λE = 2g4

3

(
s2 +4s3 +

3s4

4v0
− s5

v0

)
. (2.7)

Once again, the remaining linear combination of s1–3 cannot be fixed by matching of low-energy
observables. This can be understood from the observation that integrating out the heavy mode Σ ef-
fectively reduces the number of independent operators in the Lagrangian. This unknown parameter
does not affect low-energy physics to the order that we work at.

Finally, the parameters s4,5 encode the effects of explicit center symmetry breaking due to finite
quark masses and thus require the knowledge of the global structure of the Weiss potential (2.6).
In ref. [3], they were determined using the difference of selected observables in the absolute, stable
minimum and the metastable minimum of the Weiss potential.

2.2 Predictions of the theory

Once all the necessary parameters are fixed, the effective theory can be used to make predic-
tions. Some initial consistency test were performed in ref. [6] where the Z2 phase transition in the
effective theory was studied and its universality properties were checked.

In order to clearly discriminate ZQCD from its center-symmetry-violating predecessor, EQCD,
it is most illuminating to consider observables that are sensitive to the global structure of the Weiss
potential. In the absence of dynamical quarks, the potential has two degenerate minima and the
theory possesses a stable topological configuration, the domain wall. In full QCD, the domain wall
solution was found, at one loop, in ref. [12]. Within the effective theory, the field configuration
minimizing free energy clearly satisfies the constraint Σ2 +Π2

a = v2
0. The fields can then be param-

eterized by an angle parameter α , ranging from zero to one, as Σ = v0 cos(πα), |ΠΠΠ|= v0 sin(πα).

6



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
1
8
1

Center-symmetric effective theory for two-color QCD

The correct evaluation of the resulting effective potential requires the calculation of one-loop cor-
rections, leading to the expression

Veff(α) =
v2

0
2
(s1−4s3v2

0)sin2(πα)+
v4

0
4
(s2 +4s3)sin4(πα)−

v3
0

3π
|sin(πα)|3+

+
v3

0
2

s4
[
cos3(πα)−1

]
+

v3
0

2
s5 cos(πα)sin2(πα).

(2.8)

In the absence of Z2 breaking effects, this potential depends on two linear combinations of the
soft effective couplings s1–3, which are fixed by the matching conditions (2.7). The profile of the
domain wall is thus a sheer prediction of the effective theory. In particular, the domain wall tension
takes the value (see ref. [3] for details of the calculation)

σ ≈ 4.899× T 3

g
≈ 0.91σYM, (2.9)

where σYM =
(2

3

)3/2 π2T 3

g denotes the full theory result [12].
Once center symmetry is violated by the presence of dynamical quarks, the domain is no

longer stable. However, there is still a static spherically-symmetric three-dimensional solution to
the equations of motion, which corresponds to a bubble of the stable phase in the medium of the
metastable one. In case of weak explicit breaking of center symmetry (that is, large quark masses),
the bubble profile can be found analytically in the so-called thin-wall approximation. The actual
critical radius of the bubble results from the competition of surface energy cost and bulk energy
gain. In this approximation, it is determined solely by the surface (domain-wall) tension and energy
density difference between the stable and the metastable phase. The radius and the action of the
bubble are given by the following universal expressions, valid in both the full theory and in ZQCD,

Rc =
2
δ
× σ

T 3/g
, Sbubble =

16π

3g3δ 2 ×
(

σ

T 3/g

)3

. (2.10)

where σ is the surface tension and δ the energy density difference expressed in units of T .

3. Summary and outlook

We have constructed an effective theory for two-color QCD with dynamical quarks, valid at
moderate-to-high temperatures. Preserving by construction the center symmetry of QCD, this the-
ory contains all the ingredients necessary for a qualitatively correct description of thermodynamics
near the (de)confinement phase transition. Parameters that are relevant for physics at the soft scale
gT are fixed by matching to the Weiss potential of the full theory. Compared to ref. [6], we have
included the effects of dynamical quarks with arbitrary masses and chemical potentials. We have
thus prepared the stage for a systematic exploration of the phase diagram of two-color QCD at high
temperature by effective field theory methods.

As a first application, we calculated the tension of the domain wall, stretching between the
two minima of the Weiss potential. This is a pure prediction of the effective theory, and at the
lowest order in the weak coupling, it differs from the result in the full theory by about 9%. Next,
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Center-symmetric effective theory for two-color QCD

the effective theory can be used to study thermodynamics of two-color QCD in the range of tem-
peratures and densities where center symmetry is expected to be important. In particular, since the
dependence of the effective couplings on quark chemical potentials is known, analytic continuation
to imaginary chemical potential is trivial. Our effective theory should then be able to reproduce the
Roberge–Weiss transition correctly.
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