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1. Introduction

The properties of strongly interacting matter under extreme conditions are the subject of in-
tensive experimental and theoretical investigation. A comprehensive picture of a state of matter
requires not only the knowledge of equilibrium properties such as the equation of state and static
susceptibilities, but also an understanding of its transport properties.

Here we report on recent progress in determining the Euclidean isovector vector correlation
function using dynamical light quarks in the high temperature phase of QCD. This enables the first
analysis of its underlying spectral function with unquenched quarks. We are able to determine the
gross features of the thermal spectral function by analyzing directly the difference of the thermal
and vacuum correlators. This difference can be further constrained using a recently derived sum
rule [1]. In addition we employ an approach followed recently in a quenched study to determine
the spectral function directly from the thermal correlator based on an appropriate Ansatz [2 – 4].

Note, this proceedings article represents a shortened version of [5] and we refer the reader to
this publication for a more in depth discussion.

2. Basic definitions and expectations

Our primary observables are the Euclidean vector current correlators and their spectral repre-
sentation:

Gµν(τ,T ) =
∫

d3x 〈Jµ(τ,~x) Jν(0)†〉 =
∫

∞

0

dω

2π
ρµν(ω,T )

cosh[ω(β/2− τ)]

sinh(ωβ/2)
(2.1)

with Jµ(x)≡ 1√
2

(
ū(x)γµu(x)− d̄(x)γµd(x)

)
the isospin current. For a given function ρ(ω,T ), the

reconstructed correlator is defined as

Grec(τ,T ;T ′)≡
∫

∞

0

dω

2π
ρ(ω,T ′)

cosh[ω(β

2 − τ)]

sinh(ωβ/2)
. (2.2)

It can be interpreted as the Euclidean correlator that would be realized at temperature T if the
spectral function was unchanged between temperature T and T ′. For T ′ = 0 it can be directly
obtained from the zero-temperature Euclidean correlator via [6]

Grec(τ,T )≡ Grec(τ,T ;0) = ∑
m∈Z

G(|τ +mβ |,T = 0). (2.3)

In the thermodynamic limit, the subtracted vector spectral function obeys a sum rule (see [1] sec.
3.2), ∫

∞

−∞

dω

ω
∆ρ(ω,T ) = 0, ∆ρ(ω,T )≡ ρii(ω,T )−ρii(ω,0). (2.4)

The electrical conductivity of QCD, connected to the isospin diffusion constant D, is given by
a Kubo formula in terms of the low-frequency behavior of the spectral function, (where Cem =

∑ f=u,d Q2
f = 5/9)

σ =CemDχs =
Cem

6
lim
ω→0

ρii(ω,T )
ω

. (2.5)
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643×128 643×16 Ref. 643×128 643×16
6/g2

0 5.50 T [MeV] 253(4)
κ 0.13671 χs/T 2 0.871(1)

csw 1.7515 A1/T 3 4.42(31)
ZV 0.768(5) [7] m1/T 3.33(5)

a[fm] 0.0486(4)(5) [8] κ0 1.244(5)
mπ [MeV] 270 [8] Ω/T 5.98(11)

Table 1: The left part of the table shows the common quantities characterizing the zero-temperature and
finite-temperature ensembles. In the right part, the fit parameters for the vacuum correlator in units of
T = 253MeV and the value of the (isospin) quark number susceptibility χs/T 2 are given. For more details
on the generation of the Nτ = 128 ensemble, see [8]. The number of configurations generated with Nτ = 16
is 317.

3. Lattice QCD data

All our numerical results were computed on dynamical gauge configurations with two light,
mass-degenerate O(a)-improved Wilson quark flavors. We calculated correlation functions us-
ing the same discretization and masses as in the sea sector in two different ensembles. The first
corresponds to virtually zero-temperature on a 643× 128 lattice (labeled O7 in [8]) with a lattice
spacing of a = 0.0486(4)(5)fm [8] and a pion mass of mπ = 270MeV, so that mπL = 4.2. Sec-
ondly we generated an ensemble on a lattice of size 643× 16 with all bare parameters identical
to the zero-temperature ensemble. In this way it is straightforward to compare the correlation
functions respectively in the confined and deconfined phases of QCD. Choosing Nτ = 16 yields a
temperature of T ' 250MeV. Based on preliminary results on the pseudo-critical temperature Tc

of the crossover from the hadronic to the high-temperature phase [9], the temperature can also be
expressed as T/Tc ≈ 1.2.

The vacuum correlator serves as a reference in this work. To fix the parameters of the lightest
vector state in the finite volume of the simulation, we fitted the vacuum correlation function to an
Ansatz of the form1

Gii(τ,0) = A1e−m1τ +
3

4π2 κ0 exp(−Ωτ)
(
Ω

2/τ +2Ω/τ
2 +2/τ

3) . (3.1)

In addition we estimate the thermal (isovector) quark number susceptibility χs/T 2 from the
time-time component of the vector correlation function. The parameters used in our lattice setup,
the ‘ρ-meson’ parameters and the value of the static susceptibility are summarized in Tab. 1.

3.1 Thermal and vacuum correlators

In Fig. 1(left) we show the correlator Gii(τ,T ) computed at T ' 250MeV together with the
corresponding free ‘continuum’ and free ‘lattice discretized’ correlation functions. In addition
we show the reconstructed correlator Grec

ii (τ) as obtained from Eq. 2.3. The reconstructed cor-
relator lies somewhat lower than the thermal correlator. The insert in Fig. 1 displays the ratio
Gii(τ)/Grec

ii (τ) in order to make their relative τ dependence visible. For small Euclidean times

1For details please see [5]

3



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
1
8
6

Two-flavour lattice QCD correlation functions in the deconfinement transition region Anthony Francis

1e+00

1e+01

1e+02

1e+03

1e+04

 1  2  3  4  5  6  7  8

τ/a

Gii(τ)/T
3

Gii

1e+00

1e+01

1e+02

1e+03

1e+04

 1  2  3  4  5  6  7  8

τ/a

Gii(τ)/T
3

Gii

G
rec
ii

1e+00

1e+01

1e+02

1e+03

1e+04

 1  2  3  4  5  6  7  8

τ/a

Gii(τ)/T
3

Gii

G
rec
ii

G
latt
free

1e+00

1e+01

1e+02

1e+03

1e+04

 1  2  3  4  5  6  7  8

τ/a

Gii(τ)/T
3

Gii

G
rec
ii

G
latt
free

G
cont
free

0.9

1.0

1.1

1.2

 3  4  5  6  7  8

Gii(τ)/Gii
rec

(τ)

τ/a
0.9

1.0

1.1

1.2

 3  4  5  6  7  8

Gii(τ)/Gii
rec

(τ)

τ/a

-3

-2

-1

 0

 1

 1  2  3  4  5  6  7  8

τ/a

∆G(τ,T)/T
3

τ/a

-3

-2

-1

 0

 1

 1  2  3  4  5  6  7  8

τ/a

∆G(τ,T)/T
3

τ/a
-0.4

-0.2

 0

 0.2

 0.4

 3  4  5  6  7  8
-0.4

-0.2

 0

 0.2

 0.4

 3  4  5  6  7  8

Figure 1: Left: Thermal Gii(τ)/T 3 and reconstructed Grec
ii (τ)/T 3 vector correlators over Euclidean time

separation τ compared to the free (continuum and lattice) cases. The reconstructed correlator was computed
by applying Eq. 2.3 to the data obtained from a lattice sized Nσ = 64 and Nτ = 128 . The insertion shows the
ratio Gii(τ)/Grec

ii (τ). Right: Difference ∆G(τ,T )/T 3 of the thermal vector correlator and the corresponding
reconstructed correlator as a function of Euclidean time τ . The insertion shows ∆G(τ,T )/T 3 in the region
τ/a≥ 3.

τ < β/4 this ratio is unity, above it increases monotonically until it levels off around the midpoint
at about 10% above unity. A thermal modification of the spectral function has thus taken place (re-
call that the spectral function underlying Grec

ii (τ) contains the bound states of the confined theory).
In Fig. 1(right) we show the difference

∆G(τ,T )≡ Gii(τ,T )−Grec
ii (τ,T ) =

∫
∞

0

dω

2π
∆ρ(ω,T )

cosh[ω(β/2− τ)]

sinh(ωβ/2)
(3.2)

of the thermal and the reconstructed correlators. Given that ρii(ω,T ) and ρii(ω,T = 0) have the
same ∼ ω2 behavior, this means we are subtracting non-perturbatively the ultraviolet tail of the
spectral function. Using this difference we are therefore able to probe the change in the vector
spectral function from the confined to the deconfined phase for frequencies ω . O(T ).

For small times, the difference (3.2) turns out to be negative, while it is positive for τ ≥ β/4.
Note the errors decrease with increasing Euclidean time throughout the available range. We show
a more detailed view of the region τ/a ≥ 3 in the insert of Fig. 1(right). Here the difference still
exhibits a mild increase and levels off near the midpoint. The value it reaches at the midpoint is
∆G(τ = β/2,T )/T 3 = 0.291(55).

4. Analysis of lattice correlators in terms of spectral functions

4.1 Fit to the thermal part of the vector correlator

We proceed to investigate the behavior of the thermal part of the spectral function ∆ρ by
fitting the difference of the thermal and the reconstructed correlator, see Eq. (3.2). As described
in the previous subsection, the fact that the data (displayed in Fig. 1(right)) is positive at long
distances and negative at short distances suggests that the thermal spectral weight exceeds the
vacuum spectral weight at low frequencies and falls short of it at higher frequencies.
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Figure 2: Left: Fits to ∆G(τ,T )/T 3 ≡ [Gii(τ)−Grec
ii (τ)]/T 3. The blue and red results differ by the form

of transport peak in the Ansatz. The error bands are computed from the covariance matrix of the fit. Right:
The resulting spectral functions for both Ansätze.

We thus parametrize ∆ρ using the following Ansatz for ω ≥ 0:

∆ρ(ω,T ) = ρT (ω,T )−ρB(ω,T )+∆ρF(ω,T ), (4.1)

ρB(ω,T ) =
2cB gB tanh(ω/T )3

4(ω−mB)2 +g2
B

, (4.2)

ρT,1(ω,T ) =
4cω

(ω/g)2 +1
, ρT,2(ω,T ) =

4cT tanh(ω/T )
(ω/g)2 +1

, (4.3)

∆ρF(ω,T ) = ρF(ω,T )−ρF(ω,0), ρF(ω,T ) =
3

2π
κ ω

2 tanh
(

ω

4T

)
. (4.4)

The bound state (B) and the transport peak (T) are represented by Breit-Wigner forms. Even such
a simple Ansatz requires three parameters (cB,gB,mB) to determine the bound state peak, two
parameters (c,g) for the transport peak and one (κ) for the ‘perturbative’ contribution (F). We will
therefore fix some of them using the vacuum correlator. In the following we set mB equal to m1,
given in Tab. 1, which we obtained from the exponential fit to the vacuum correlator. Note that the
area under the bound state peak

∫
dw ρB/ω does not depend on the width gB in the limit where it is

small. We therefore perform fits for three fixed values of this parameter, and check the sensitivity
of the result. We choose the values gB/T = 0.1,0.5 and 1.0.

The tail ∼ T/ω of the Ansatz ρT,1 violates the OPE prediction that ∆ρ ∼ (T/ω)2 at large
frequencies. It has been argued in [10] that this might lead to an overestimate of the transport
contribution. To avoid this problem we introduce the Ansatz 2, where ω → T tanh(ω/T ). This
Ansatz possesses the correct asymptotic behavior, as well as the expected linear behavior in ω at
small frequencies. Finally, to complete the parametrization of ∆ρ(ω), we include a weak-coupling
term describing the subtraction of the large frequency parts of the thermal and vacuum spectral
functions. This contribution ρF(ω,κ)→ 0 vanishes exponentially as the frequency increases.

In the next step we fit the combined Ansätze of ∆ρ(ω,cB,gB,mB,c,g,κ) to the data, while at
the same time satisfying the sum rule of Eq. 2.4 to an accuracy of 10−8. We limit ourselves to

5
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Figure 3: Left panel: fit results for Gii(τ)/G f ree
µµ (τ) using both Ansätze for the transport peak. The resulting

ratio of thermal moments R(2,0)/R(2,0) f ree are displayed on the right side of the plot. Right panel: The
corresponding spectral functions normalized by ωT .

fitting the region 5 ≤ τ/a ≤ 8 only, in order to minimize the influence of cut-off effects. With mB

determined by the vacuum correlator, we set gB successively to the three different values mentioned
above and fixed κ around unity, and fitted the parameters c, g and cB. The errors and error bands
shown in the following have been computed using the covariance matrix of the corresponding fit
for fixed values of gB and κ .

The resulting correlators and spectral functions are displayed in Fig. 2 for gB/T = 0.50 and
κ = 1.10. In the left panel of Fig. 2 the data ∆G(τ,T ) is compared to the fits using ρT,1(ω) and
ρT,2(ω) as transport contribution. We achieve a quasi-perfect description of the data for τ/a ≥ 4.
The right panel shows that both Ansätze exhibit a substantial spectral weight around the origin and
a negative contribution from the region of the ρ mass.

4.2 Weak-coupling inspired fit to the thermal vector

In contrast to the previous section, here we study directly the thermal vector correlator and its
ratio of thermal moments R(2,0), computed along the lines of [2]. We perform a fit inspired by the
weak coupling form of the thermal spectral function,

ρ(ω,T ) = ρT (ω,T )+ρF(ω,T ) , (4.5)

where the form of the two contributions is defined in Eq. (4.3) and (4.4). At a given temperature
this Ansatz is characterized by three parameters (c,g,κ). We fit the full Ansatz ρ(ω,c,g,κ) to
the thermal correlator Gii(τ), while at the same time demanding that R(2,0) be reproduced. In this
analysis the three parameters c,g and κ are fitted, and the fit range is 5≤ τ/a≤ 8 as before.

The resulting correlators and spectral functions are shown in Fig. 3. The ratio Gii(τ)/Gfree
µµ (τ)

in the left panel of Fig. 3 is well described by both versions ρT,1 and ρT,2 of the transport contri-
bution for τ/a ≥ 5, while also the ratio of thermal moments (given on the far right of the plot) is
reproduced. For τ/a < 5 our Ansatz fails to reproduce these points, which we suspect is partly due
to cutoff effects.
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Figure 4: Comparison of the spectral functions obtained from analyzing (a) ∆G(τ,T ) and (b) Gii(τ,T )
using in both cases ρT,2(ω)∼ tanh(ω/T ) in the low frequency region. All curves have been multiplied by a
factor 1/6 and divided by ωT , entailing that the intercept at ω = 0 yields an estimate of σ/CemT .

On the right hand side of Fig. 3 we show the resulting spectral functions divided by ωT .
Clearly both Ansätze give very similar results that lie within errors of each other. The thermal
correlator is even less sensitive to the asymptotic behavior of the transport contribution in the
Ansatz than in the difference of correlators studied in Sec. 4.1.

5. Discussion

We now compare the results of the fits to ∆G(τ,T ) and Gii(τ,T ). Since the vacuum spectral
function vanishes below 2mπ ≈ 540MeV (in infinite volume), ρii(ω,T ) and ∆ρ(ω,T ) should be
equal for ω < 2mπ ≈ 2.1T . We thus plot the spectral functions obtained from the two fits in
this frequency region, see Fig. 4. Here we restrict ourselves to showing these results based on
ρT,2(ω,T ), as their theoretical foundation is more sound than those with ρT,1(ω,T ). All curves are
multiplied by a factor 1/6, which means that the intercept at ω = 0 yields an estimate of σ/CemT
with σ the electrical conductivity of the quark gluon plasma.

The results obtained by fitting Gii(τ,T ) agree very well with the central values obtained by
fitting ∆G(τ,T ), whereby the fit to ∆G(τ,T ) using the transport Ansatz ρT,2(ω) yields a slightly
lower intercept. If we assume the spectral function to be as smooth around the origin as Fig. 4
suggests, we obtain the following estimate for the electrical conductivity of the quark gluon plasma
at T ' 250MeV,

σ

CemT
= 0.40(12), (5.1)

where Cem = ∑ f=u,d Q2
f . Although obtained under a strong assumption, it is interesting to compare

(5.1) to other lattice results obtained under similar assumptions. The following comparison is made
with quenched results, since to our knowledge there are no previous dynamical QCD studies.
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Quenched calculations using staggered fermions and different methods for analyzing the spec-
tral function obtained σ/T = 7Cem[11] and σ/T = 0.4(1)Cem [12] in the temperature region 1.5≤
T/Tc ≤ 3.0. Also, a recent quenched study using Wilson-Clover fermions in the continuum limit
obtained 0.33Cem ≤ σ/T ≤ 1Cem at T ' 1.45Tc [2] and T ' 1.1Tc[4], with similar non-continuum
results up to temperatures T ' 2.98Tc[3]. Our results using dynamical Wilson-Clover fermions at
Nτ = 16 are thus completely compatible with the recent quenched results.
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