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We calculate cumulants of fluctuations of net-baryon number, net-electric charge and net-
strangeness, in the framework of lattice regularized QCD. We use a highly improved staggered
quark (HISQ) action on lattices with temporal extent of Nτ = 6,8 and 12 and almost physical
quark masses. By means of a Taylor expansion in various chemical potentials and under de-
manding both strangeness neutrality as well as the correct isospin asymmetry, we evaluate these
fluctuations at conditions met in heavy ion collisions. Cumulants of net-electric charge fluctu-
ations can, in principle, also be measured in heavy ion experiments. We therefore propose a
method to extract freeze-out parameters, such as the freeze-out temperature and baryon chemical
potential, based on a comparison of lattice results and experimental measurements of two differ-
ent ratios of net-electric charge cumulants. As this method involves only (lattice) QCD results and
experimental measurements it is model independent and, for the purpose of extracting freeze-out
parameters, does not require any input from hadron resonance gas model calculations.
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1. Introduction

To obtain a detailed and quantitative understanding of the QCD phase diagram is one of the
most important and outstanding problems in high energy physics. The analysis of the phase dia-
gram is naturally connected with an investigation of the properties of strongly interacting matter at
high temperature and densities and the nature of the QCD phase transition. One expects that the
nature of the transition depends on the quark masses and chemical potentials. A generic phase dia-
gram based on model calculations and model independet arguments is shown in Fig. 1 [1]. One of
the most interesting question is to clarify whether there exists a critical point in the phase diagram
at physical quark masses or not.
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Figure 1: Generic phase diagram of QCD, based on model calculations and model independent symmetry
arguments. Also indicated are the regions in the phase diagram where we are able to obtain results on
fluctuation observables from lattice QCD and experiments, respectively.

Recently large efforts are made in probing the QCD phase diagram with heavy ion collision.
The RHIC beam energy scan program (BES) aims at a systematic scan of the QCD phase diagram.
Through a variation of the center of mass energy of the two colliding ions, the fireball made of
quark gluon plasma (QGP) is generated under different initial conditions, as e.g., different initial
temperatures and net-baryon densities. After its formation, it evolves on isentropic (hydrodynamic)
trajectories in the phase diagram, i.e. it expands and cools. It eventually goes through the QCD
transition and hadronizes. The point from whereon the abundance of the hadronic particle species
do no longer change is called chemical freeze-out. The particle yields realized here are then fi-
nally measured by various detectors, only modified by particle decays. One expects that under the
variation of the collision energy (

√
sAA), the freeze-out happens along a one-dimensional curve in

the phase diagram that can be parametrized by
√

sAA [2]. The freeze-out curve is also shown in
Fig. 1. One way to calculate the freeze-out parameters such as temperature, chemical potentials
and volume is by performing a least-square-fit of the Hadron Resonance Gas (HRG) model to the
measured particle yields. This procedure has been very successful in the past [3].
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Theoretically best understood is the QCD phase diagram at vanishing net-baryon density, or
equivalently zero baryon chemical potential. Here lattice regularized calculations of QCD are
feasible and have reached a precision level that enables controlled continuum extrapolated results
with physical quark masses. Also this region is indicated in Fig. 1. Unfortunately, lattice QCD
calculations are not possible at non-vanishing net-baryon densities by means of standard Monte
Carlo methods, due to the notorious sign problem. Nevertheless, there are possibilities to extract
lattice QCD results at small but nonzero baryon chemical potentials. A straightforward approach is,
e.g., given by expanding the observables in a Taylor series around zero baryon chemical potential
(µB ≡ 0) [4]. A method to calculate the freeze-out curve by a direct comparison of lattice results
with experimental measurements has been recently proposed by us [5, 6, 7, 8]. It is based on
a Taylor expansion of ratios of cumulants of net-charge fluctuations. Since it involves only first
principle lattice QCD calculations it is (HRG) model independent.

2. Cumulants of conserved charges

We start with considering an expansion of the QCD partition functions – or rather the pressure
in dimensionless units – in terms of the net-baryon, net-electric charge and net-strangeness chem-
ical potentials, also in dimensionless units (µ̂B ≡ µB/T, µ̂Q ≡ µQ/T, µ̂S ≡ µS/T ) which is given
by

p
T 4 =

1
V T 3 lnZ = ∑

i, j,k

1
i! j! k!

χ
BQS
i jk,0 µ̂

i
B µ̂

j
Q µ̂

k
S . (2.1)

We calculate the temperature dependent coefficients χ
BQS
i jk,0 on the lattice at vanishing chemical po-

tentials. On the lattice we obtain them as derivatives of the partition function (generalized suscep-
tibilities) exactly as given by the definition of the Taylor series(

V T 3) ·χBQS
i jk,0(T ) =

(
∂

i+ j+k lnZ(T,µB,µQ,µS)
)/(

∂ µ̂
i
B∂ µ̂

j
Q∂ µ̂

k
S

)∣∣∣
~µ=0

. (2.2)

Interestingly, these coefficients also define cumulants of the corresponding net-charge fluctuations
(NB,NQ,NS), for the diagonal coefficients one finds(

V T 3) ·χX
2 =

〈
(δNX)

2
〉
, (2.3)(

V T 3) ·χX
4 =

〈
(δNX)

4
〉
−3
〈
(δNX)

2
〉2

, (2.4)(
V T 3) ·χX

6 =
〈
(δNX)

6
〉
−15

〈
(δNX)

4
〉〈

(δNX)
2
〉
+30

〈
(δNX)

2
〉3

, (2.5)

with X = B,Q,S and δNX = NX −〈NX〉. Similar relations can also be found for the off-diagonal
coefficients. The cumulants of charge fluctuations can in principal be measured in heavy ion ex-
periments. However, as experiments have difficulties to trigger on neutrons and various strange
particles, baryon number and strangeness fluctuations seem to be unfeasible. On the other hand,
experiments can measure proton number fluctuations [9], which can not be calculated in QCD since
the proton number is not a conserved quantity. Unless one finds a way to relate proton number to
baryon number fluctuations [10, 11] the only remaining set of cumulants that can be obtained in
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both experiments and lattice QCD calculations are the net-electric charge fluctuations. Neverthe-
less, we have to keep in mind, that the measurement of the fluctuations of a conserved charge is a
difficult experimental task, as it involves a delicate tuning of the rapidity window that is accepted in
the detectors [12]. Choosing the acceptance range too large, will result in a suppressed signal as the
global charge conservations forces the fluctuations to vanish in the limit of a total (4π) acceptance,
on the other hand, an acceptance that is too small will loose the sensitivity to the relevant physics
and/or not survive hadronization and the hadronic phase.

In lattice QCD calculations electric charge fluctuations have systematic errors that need to be
controlled. Although statistical errors are much smaller than in the baryon number fluctuations,
one has to work on very fine lattices in order to control the continuum limit systematically. This is
due to the fact that large contributions to the electric charge fluctuations stem from the light pion
sector. The pion spectrum is distorted on the lattice, when one uses the popular staggered fermion
formulation of the QCD action. For reasons of the numerical costs, staggered fermions are the
most common type of fermions for thermodynamic calculations on the lattice. In the following we
will use the highly improved staggered fermion (HISQ) action [14], with reduces the deformation
of the pion sector as much as possible.

In Fig. 2 we show our preliminary results of the cumulants (expansion coefficients), obtained
with the HISQ action. The calculations have been done with 2 light and one heavier quark flavor
and almost physical quark masses, i.e. the strange quark mass has been fixed to its physical value,
whereas the light quark mass was taken to be 1/20 of the strange quark mass. In general we find
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Figure 2: Second and fourth order cumulants of net-baryon number fluctuations (left column), net-electric
charge fluctuations (middle column) and net-strangeness fluctuations (right column). Different symbols
denote different lattice spacings: Nτ = 6 (triangles) and 8 (circles). The vertical bar indicates the QCD
transition temperature as obtained in [15].

little dependence on the lattice cutoff, which is here controlled by the number of lattice points in
(Euclidean) temporal direction (Nτ ). In case of the 2nd order fluctuations the HotQCD Collabo-
ration has performed a continuum extrapolation based on Nτ = 6,8 and 12 lattices [16]. Good
agreement with HRG model results has been found for temperatures below T . 150 MeV.

The structure of the cumulants is found to be consistent with the expected QCD critical be-
havior connected to the O(4) critical point in the massless limit of the two light quark flavors (see
Fig. 1). From an analysis of the free energy in terms of universal scaling fields one would expect
the singular part of the cumulants to behave as χX

2n ∼ |t|2−n−α [13], at least for X = B and Q, where
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t is the reduced temperature and α the critical exponent of the specific heat. As α is small and
negative (α ≈−0.15) the 4th order fluctuations should develop an cusp in the chiral limit whereas
the 6th order fluctuations are the first to diverge.

3. Electric charge and strangeness chemical potentials

In order to resemble the conditions met in heavy ion collisions as closely as possible, we
demand strangeness neutrality (〈NS〉 = 0) and the correct isospin asymmetry (r = 〈NQ〉/〈NB〉).
These two conditions can be realized by choosing the free parameter µ̂Q and µ̂S accordingly. By
expanding both the conditions as well as the chemical potentials in terms of µ̂B,

µ̂S = s1(T )µ̂B + s3(T )µ̂3
B +O(µ̂5

B), µ̂Q = q1(T )µ̂B +q3(T )µ̂3
B +O(µ̂5

B), (3.1)

we can solve for the coefficients in Eq. 3.1 order by order and thus enforce the conditions up
to arbitrary order in µ̂B. Or results for the leading order (LO) and next to leading order (NLO)
coefficients of the µ̂Q and µ̂S series are shown in Fig. 3 (left and middle). The upper panel shows the
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Figure 3: The leading and next-to-leading order expansion coefficients of the strangeness (left) and the
negative of the electric charge chemical potentials (middle) versus temperature for r = 0.4. For s1 and q1 the
LO-bands show results for the continuum extrapolation. For s3 and q3 we give an estimate for continuum
results (NLO bands) based on spline interpolations of the Nτ = 8 data. Dashed lines at low temperature are
from the HRG model and at high temperature from a massless, 3-flavor quark gas. The right hand panel
shows NLO results for µS/µB and µQ/µB as function of µB for three values of the temperature.

leading order (LO), whereas the lower panels show the ratio of NLO to LO coefficients. The band
in the upper panels indicates the continuum extrapolation based on the Nτ = 6,8 and 12 data, the
band in the lower panels is a continuum estimate based on spline interpolations of the Nτ = 8 data.
We find that the NLO contributions are negligible in the high temperature region and below 10% in
the temperature interval relevant for the analysis of freeze-out conditions, i.e., T ≈ (160±10) MeV.
In fact, in this temperature range the leading order lattice QCD results deviate from HRG model
calculations expanded to the same order by less than 15%. Note that one can also investigate the
convergence properties of the HRG model itself. In the HRG model the NLO expansion reproduces
the full HRG result for µ̂Q and µ̂S to better than 1.0% for all values of µ̂B . 1.3. Altogether, we
thus expect that the NLO truncated QCD expansion is a good approximation to the complete QCD
results for µ̂Q and µ̂S for µB . 200 MeV.
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Our results for the strangeness and electric charge chemical potentials at NLO as function of
µB and T are shown in Fig. 3 (right). While µS/µB varies between 0.2 and 0.3 in the interval 150
MeV . T . 170 MeV, the absolute value of µQ/µB is an order of magnitude smaller. Both ratios
are almost constant for µB . 200 MeV, which is consistent with HRG model calculations.

4. Comparison with the experiment

We will now construct the observables that we want to compare with the experiment in order
to determine the remaining freeze-out parameters, which are the freeze-out temperature (T f ), the
freeze-out baryon chemical potential (µ f

B ) and the freeze-out volume (V f ). The latter one can
be easily eliminated by considering ratios of cumulants as should be apparent from Eqs. 2.2 -
2.5. We are thus left with two freeze-out parameters (T f ,µ f

B ), for which we need two independent
observables to match with the experiment. As already discussed in Sec. 2, from the set of cumulants
here considered, only the net-electric charge fluctuations can be determined on the lattice as well
as measured in experiments. We therefore propose the following two ratios of net-electric charge
fluctuations for the comparison with the experiment.

RQ
12 ≡

MQ

σ2
Q

=
χ

Q
1

χ
Q
2

= µ̂B

(
RQ,1

12 +RQ,3
12 µ̂

2
B +O(µ̂4

B)
)
, (4.1)

RQ
31 ≡

SQσ3
Q

MQ
=

χ
Q
3

χ
Q
1

= RQ,0
31 +RQ,2

31 µ̂
2
B +O(µ̂4

B) . (4.2)

Here we expressed the cumulant ratios also in terms of the mean value (M), the variance (σ ) and
the skewness (S), which characterize the shape of the net-electric charge distribution. We have
again expanded these two quantities in terms of µ̂B and determined the LO and NLO contributions
in that series (the remaining chemical potentials µQ and µS have been fixed as described in Sec. 3).
The two ratios defined in Eq. 4.1 and 4.2 represent the most simple choice as they only involve
the evaluation of cumulants up to the 2nd and 4th order, respectively, at LO and up to the 4th and
6th order, respectively, at NLO. Morover, they are complementary in the sense that RQ

12 (Eq. 4.1) is
an odd function of µ̂B, which leads to a distinct sensitivity with respect to the freeze-out chemical
potential (µ f

B ), whereas R31 (Eq. 4.2) is an even function of µ̂B, starting with a constant, which
results in a much more pronounced sensitivity to the freeze-out temperature (T f ).

In Fig. 4 (left) we show our results on the LO and NLO expansion coefficients of RQ
12. The

bands on the lower and upper panel have the same meaning as in Fig. 3 (left). We find that the
NLO corrections to RQ

12 are below 10%, which makes the LO result a good approximation for a
large range of µ̂B. Systematic errors arising from the truncation of the Taylor series for RQ

12 at
NLO may again be estimated by comparing the full result in the HRG model calculation with
the corresponding truncated results. Here we find for T = (160± 10) MeV and µ̂B . 1.3 that
the difference is less than 1.0%. Moreover, we estimated that taste violation effects in the NLO
calculation lead to systematic errors that are at most 5% and thus will be negligible in RQ

12 . Taylor
series truncated at NLO are thus expected to give a good approximation to the full result for a wide
range of baryon chemical potentials.

In Fig. 4 (middle) we show the full µB and T dependence of RQ
12, including the NLO con-

tribution. Obviously the ratio RQ
12 shows a strong sensitivity on µB but varies little with T in the
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Figure 4: The left panel shows LO (top) and NLO (bottom) expansion coefficients of RQ
12 for r = 0.4. The

bands and lines are as in Fig. 3(left).On the middle panel we plot RQ
12 versus µB/T , including the NLO

contribution, for three values of the temperature. RQ
31 versus temperature is shown on the right panel for

µB = 0. The wider band on the data set for Nτ = 8 shows an estimate of the magnitude of NLO corrections.

temperature range T = (160±10) MeV. For the determination of (T f ,µ f
B) a second, complimen-

tary information is needed. To this end we use the ratio RQ
31, which is strongly dependent on T but

receives corrections only at O(µ̂2
B). The leading order result for this ratio is shown in Fig. 4 (right).

Apparently this ratio shows a characteristic temperature dependence for T & 155 MeV that is quite
different from that of HRG model calculations. The NLO correction to this ratio vanishes in the
high temperature limit and at low T the HRG model also suggests small corrections. In fact, in
the HRG model the LO contributions to RQ

31 differ by less than 2% from the exact results on the
freeze-out curve for µB . 200 MeV. The broader band in Fig. 4 (right) indicates an estimate of the
NLO contribution at µ̂B = 1 from our Nτ = 8 calculations.

We now are in the position to extract µ
f

B and Tf from RQ
12 and RQ

31 which eventually will be
measured in the beam energy scan at RHIC [17, 18]. A large value for RQ

31, i.e. RQ
31 ' 2 would

suggest a low freeze-out temperature T . 155 MeV, while a value RQ
31 ' 1 would suggest a large

freeze-out temperature, T ∼ 170 MeV. A value of RQ
31 ' 1.5 would correspond to T ∼ 160 MeV.

A measurement of RQ
31 thus suffices to determine the freeze-out temperature. In the HRG model

parametrization of the freeze-out curve [2] the favorite value for T f in the beam energy range
200 GeV ≥ √sAA ≥ 39 GeV indeed varies by less than 2 MeV and is about 165 MeV. At this
temperature the values for RQ

31 calculated in the HRG model and in QCD differ quite a bit, as
is obvious from Fig. 4 (right). While RQ

31 ' 2 in the HRG model, one finds RQ
31 ' 1.2 in QCD

at T = 165 MeV. Values close to the HRG value are compatible with QCD calculations only for
T . 157 MeV. We thus expect to either find freeze-out temperatures that are about 5% below HRG
model results or values for RQ

31 that are significantly smaller than the HRG value. A measurement
of this cumulant ratio at RHIC thus will allow to determine T f and probe the consistency with
HRG model predictions.

For any of these temperature values a comparison of an experimental value for RQ
12 with Fig.4

(middle) will allow to determine µ
f

B . To be specific, at T = 160 MeV we expect to find µ
f

B =

(20−30) MeV, if RQ
12 lies in the range 0.012−0.020, µ

f
B = (50−70) MeV for 0.032≤RQ

12≤ 0.045
and µ

f
B = (80−120) MeV for 0.05≤ RQ

12 ≤ 0.08. These parameter ranges are expected [2] to cover
the regions relevant for RHIC beam energies

√
sAA = 200 GeV, 62.4 GeV and 39 GeV, respectively.
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As is evident from Fig. 4 (middle) the values for µ
f

B will shift to smaller (larger) values when T f

turns out to be larger (smaller) than 160 MeV. A more refined analysis of (T f ,µ f
B) will become

possible, once the ratios RQ
12 and RQ

31 have been measured experimentally.
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