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1. Introduction

The responses of the QCD pressure to the change of quark chemical potentials are described
by quark number susceptibilities defined by

χi jk...(T ) ≡
∂ n p(T,{µ f })

∂ µi ∂ µ j ∂ µk · · ·

∣∣∣∣
µ f =0

, (1.1)

where the indices i, j,k, ... refer to different quark flavors. These quantities are of great importance
due to the fact that they are closely related to fluctuations of conserved charges which signal the
QCD phase transition. More interestingly, these quantities are free of the notorious sign problem,
and therefore can be accessed on the lattice (see e.g. [1, 2] and references therein for recent studies).
Besides, extensive analytic work on susceptibilities has been carried out within unresummed per-
turbation theory [3, 4], the hard-thermal-loop (HTL) approximation [5, 6, 7, 8, 9], the analytically
tractable large-N f limit of QCD [10, 11], and even the gauge/gravity duality [12].

The strength of the QCD running coupling in the RHIC and LHC energy regimes is on the
order of g ∼ 2, which is some intermediate value neither infinitesimally small nor infinitely large.
It is clear that a quantitative description of the quark-gluon plasma in this intermediate coupling
regime necessitates the use of nonperturbative techniques, while it is also of theoretical interest
to explore to what extent resummed perturbation theory would be able to able to provide a good
approximation. In this proceedings, we focus on the second and fourth order quark number sus-
ceptibilities obtained from state-of-the-art resummed perturbative calculations. To this end, we
address results from two separate resummation schemes: 1) Hard-thermal-loop perturbation theory
(HTLpt) at one-loop order [13] which amounts to shifting the perturbative expansion from being
around an ideal gas of massless particles which is the physical picture of the weak-coupling ex-
pansion, to being around a gas of massive quasiparticles which are the more appropriate physical
degrees of freedom at high temperature and/or density (see [14] for a review); 2) Application of
the resummation scheme of [15, 16] to the four-loop µ 6= 0 equation of state derived in [3] using a
dimensionally reduced (DR) effective theory [17, 18] which leads to a significant improvement in
the convergence and renormalization scale dependence of the results. In the next section, we will
present our results and compare them with recent high precision lattice data in the intermediate
coupling regime, while we refer to [19] for the formalisms and calculation details.

2. Results and discussions

In this section, we will concentrate on the phenomenologically relevant case of three dynam-
ical quark flavors. All the results in [19] are obtained using dimensional regularization in the MS
scheme, denoting the renormalization scale by Λ̄. The central value of Λ̄ is determined by ap-
plying the Fastest Apparent Convergence (FAC) criterion to the three-dimensional gauge coupling
g3, resulting in Λ̄central ≈ 1.445× 2πT [18], around which a factor of 2 is varied in order to test
the sensitivity of the result with respect to this choice. For the QCD running coupling, we use
one-loop perturbative expression in the HTLpt result and two-loop one in the DR case, in accor-
dance with the conventional criterion that the uncertainties originating from the running coupling
should not exceed those due to the perturbative computation itself. For the choice of the QCD scale
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Figure 1: A comparison of our HTLpt (red) and DR (blue) results of the second order quark number sus-
ceptibility χu2 with the latest lattice results of the BNL-Bielefeld [21, 22] (black) and Wuppertal-Budapest
(WB) [2] (green) collaborations.

ΛMS, we use a recent lattice determination of the running coupling at a reference scale of 1.5 GeV
[20]. Requiring that our one- and two-loop running couplings agree with this, we obtain the values
176 MeV and 283 MeV in these two cases, respectively. To access the uncertainties of these num-
bers, we vary the value of ΛMS around these numbers by 30 MeV, which is somewhat larger than
the reported lattice error bars.

In Figure 1, we show our results of the second order quark number susceptibility χu2 ≡ χuu,
normalized by its noninteracting Stefan-Boltzmann (SB) limit value χu2,SB = T 2. The results are
compared with the latest Nτ = 8 lattice data of the BNL-Bielefeld collaboration (black) using the
HISQ action [21, 22], and the recent continuum extrapolated lattice data from the Wuppertal-
Budapest (WB) collaboration (green) [2]. The bands of the HTLpt (red) and DR (blue) results
are obtained by varying both Λ̄ and ΛMS as described in the last paragraph. The widths of the
bands demonstrate that our results have a rather mild dependence on the chosen renormalization
scale as well as the QCD scale. For instance, a comparison of the DR band with the unresummed
four-loop result of [3] shows a reduction of the uncertainty by a factor close to 10 in this temper-
ature range. Our two results are in addition in reasonably good agreement with each other at high
temperatures, deviating in a significant way only below 400 MeV. In this low temperature regime,
we see that the HTLpt result overlaps with the lattice data down to T ∼ 250 MeV, while the DR one
— despite qualitatively reproducing the trend of the lattice results — consistently underestimates
them by approximately 10% (until even lower temperatures, where the agreement is most likely
accidental).

In Figure 2, we show our results of the fourth order quark number susceptibility χu4 ≡ χuuuu,
again scaled by its SB limit χu4,SB = 6/π2. The continuum extrapolated WB lattice data here

3



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
1
8
9

Quark number susceptibilities at intermediate coupling Nan Su

200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

T HMeVL

Χ
u4

Χ
u4,SB

DR
HTLpt
WB
BNL-Bielefeld, NΤ=8

Figure 2: A comparison of our HTLpt (red) and DR (blue) results of the fourth order quark number sus-
ceptibility χu2 with the latest lattice results of the BNL-Bielefeld [21, 22] (black) and Wuppertal-Budapest
(WB) [23] (green) collaborations.

is their latest from [23], while the BNL-Bielefeld lattice data are again obtained using the HISQ
action with Nτ = 8 [21, 22]. It is clearly seen that both data sets are inside the HTLpt band until
T ∼ 200 MeV. The DR prediction is again seen to reproduce the qualitative trend of the lattice
data, but there is once more a roughly 10% offset between the two predictions at the most relevant
temperatures. Curiously, this time the DR band lie above the lattice data, which in particular implies
that there is no choice of parameters such as Λ̄ and ΛMS, for which both the second and fourth order
susceptibilities would match the lattice predictions.

A particularly interesting aspect of our results can be found in the temperature range of 250-
500 MeV, where both of our perturbative predictions as well as the lattice data indicate that the
(appropriately normalized) second and fourth order susceptibilities are relatively slowly varying
functions of T . However, whereas the DR results predict that both quantities are roughly 20%
below their SB limit at these values of T , in the lattice and HTLpt results there is a clear differ-
ence between χu2 and χu4, suggesting that the former reaches the SB limit much faster than the
latter. This difference is particularly prominent in Figure 3, where we plot the ratio of the two
susceptibilities, T 2χu4/χu2, for which the T → ∞ limit is 6/π2 (dashed line). From here, we see a
clear discrepancy between the highly robust DR prediction, resulting from an almost perfect can-
celation of the renormalization and ΛMS dependence in the ratio, and the lattice results. At the
same time, the HTLpt band, still exhibiting mild scale dependence, is seen to be consistent with
the lattice data over a remarkably large temperature range. It should be extremely interesting to
attempt to explain this behavior, both by studying the potential numerical effect that including the
unknown O(g6) term may have on the DR result, and by deriving a two-loop HTLpt prediction for
the susceptibilities from continuing the recent work of [24].
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Figure 3: The ratio of the results shown in the previous two figures. This time, the quantity is not normalized
by the SB value, but rather approached the value 6/π2 (dashed line) at high temperatures.

Unlike lattice calculations, perturbation theory works optimally at very high temperatures and
thus offers a way to connect the results obtained around the phase transition to arbitrarily high
energies. More importantly, in contrast to lattice, perturbative calculations are free from the sign
problem, ad therefore can be straightforwardly generalized to finite density. Hopefully, our results
will find phenomenological applications in the study of the current and future heavy ion data from
RHIC, LHC, and FAIR.
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