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In this talk, we discuss a number of recent calculations aimed at determining the spectral functions
corresponding to various components of the energy momentum tensor in high-temperature SU(N)
Yang-Mills theory. The computations reviewed include applications of both weak coupling and
gauge/gravity techniques, and thus enable one to access different limits of the quantities. The
motivation for the work is twofold: On one hand, the results are hoped to aid the eventual non-
perturbative extraction of the bulk and shear viscosities from lattice data, while on the other hand
they also enable an immediate comparison of the lattice, perturbative and holographic predictions
for certain Euclidean correlators.
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1. Motivation and setup

The past decade has witnessed a remarkable progress in the hydrodynamic description of the
heavy ion experiments conducted at RHIC and the LHC [1, 2]. In addition to providing a more
coherent picture of the evolution of the expanding fireball, this development has also highlighted the
importance of having a quantitatively accurate handle on the transport properties of the quark gluon
plasma (QGP). This necessitates in particular the development of new tools to predict the values
of the transport coefficients that appear in the hydrodynamic equations governing the dynamics of
the system, of which the shear viscosity is perhaps the most prominent example [3, 4]. An analysis
of the elliptic flow data from RHIC has namely pointed towards a small but nonvanishing value for
the shear viscosity to entropy ratio η/s, which is in clear contrast with perturbative expectations
[5, 6], but in surprisingly good agreement with the value obtained for strongly coupled large-Nc

field theories via the gauge/gravity duality [7] (see also [8, 9] for some recent developments). This
has in particular led to the famous conjecture of the QGP produced at RHIC being a nearly ‘ideal’
fluid; at LHC, things may, however, be markedly different.

Unfortunately, the first principles determination of transport coefficients in an interacting quan-
tum field theory is a complicated problem. In the weakly coupled limit of asymptotically high tem-
peratures, only low order perturbative results are available, and their convergence appears to be far
from optimal (see e.g. [6] and references therein). Closer to the critical temperature Tc, one clearly
needs nonperturbative machinery, but due to the restriction of lattice QCD to the Euclidean formu-
lation of the theory, the transport coefficients — obtainable from the IR limit of the corresponding
Minkowskian spectral functions — are not directly available [10, 11, 12, 13]. Finally, in the in-
finitely strongly coupled limit of a class of (mostly conformal) theories [14, 15, 16, 17, 18, 19], for
which five-dimensional gravity duals exist, both spectral functions and transport coefficients are
available via relatively straightforward calculations. In this context, a nontrivial question however
is, how to relate the dual field theories to real life QCD; to this end, a particularly promising direc-
tion has been the development of Improved Holographic QCD (IHQCD) [20] — a five-dimensional
gravity-dilaton system designed to systematically mimic the properties of quarkless QCD both in
the IR and UV (see also [21, 22] for recent work towards including fermionic effects in the model).

In this talk, our goal is to review and discuss the results of a series of recent works, in which
the task of determining the bulk and shear channel spectral functions in SU(N) Yang-Mills theory
has been undertaken [19, 23, 24, 25]. The motivation for this comes from two separate directions.
Due to asymptotic freedom, perturbation theory is expected to provide an accurate description of
the UV behavior of various correlators. This makes it a vital ingredient in any attempt to perform
an analytic continuation of Euclidean lattice data to Minkowskian signature [26], necessary to
obtain nonperturbative first principles predictions for the corresponding transport coefficients.1 At
the same time, the spectral functions (as well as the Euclidean correlation functions that can be
determined from them) are also interesting quantities as such. A comparison between the lattice,
perturbative and holographic predictions for the correlators namely allows one to assess the extent,
to which QGP can be characterized as being ‘weakly’ or ‘strongly’ coupled at various temperatures,
constituting one of the most prominent open questions in the field.

1For two successful examples of this, see [27, 28].
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Figure 1: The bulk [23] and shear [24] channel spectral functions of SU(3) Yang-Mills theory, shown on a
logarithmic scale for T = 3Tc or 3.75ΛMS. In the latter, the red dashed curve corresponds to the LO result,
while the blue curves stand for the NLO ones. The spike in the NLO shear spectral function corresponds to
the sign of the quantity turning from positive to negative (with increasing ω).

We close the introductory part by briefly summarizing the setting of the works we cover,
explained in more detail e.g. in [23, 24]. Throughout our presentation, we work within pure SU(N)
Yang-Mills theory at a nonzero temperature T , defined by the Euclidean action

SE =
∫

β

0
dτ

∫
d3−2εx

1
4

Fa
µνFa

µν ≡
∫

x

1
4

Fa
µνFa

µν , (1.1)

where we have written β ≡ 1/T and

Fa
µν ≡ ∂µAa

ν −∂νAa
µ +gB f abcAb

µAc
ν . (1.2)

The energy-momentum tensor of the theory takes the form

Tµν =
1
4

δµνFa
αβ

Fa
αβ
−Fa

µαFa
να , (1.3)

which helps us define the bulk and shear operators

Tµµ ≡ θ =
β (g)
2g

Fa
µνFa

µν , (1.4)

T12 ≡ η/(4i) , (1.5)

where the normalization of the latter has been chosen to be in accordance with [24]. For both of
these operators, we define the spectral function through

ρX(ω) = Im
[
G̃X(ω,0)

]
, (1.6)

where G̃X(p0,p) is the corresponding momentum space retarded Green’s function. It is important
to note that to simplify our task, we have here set the external three-momentum p to zero here.
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Figure 2: The imaginary time correlators in the bulk and shear channels of SU(3) Yang-Mills theory, eval-
uated at T = 3Tc [23, 24]. In the shear plot, the red dashed line again corresponds to the LO and the blue
curves to the NLO result.

2. Perturbation theory

While leading order (i.e. noninteracting) spectral functions are rather straightforward quanti-
ties to determine, it is only very recently that a systematic technology was developed for the evalu-
ation of their next-to-leading order corrections [23]. This work concentrated on the bulk channel of
Yang-Mills theory, where — building on the earlier analysis of the UV limit of the quantity in [29]
— it developed a machinery, with which NLO spectral functions can be systematically reduced to
sums of numerical one- and two-dimensional phase space integrals. In [24, 30], this method was
subsequently generalized to the technically more complicated case of the shear channel, in which
the integrands are no longer rotationally invariant in momentum space.

The main results of [23, 24] have the forms

ρ
θ
(ω)

4dAc2
θ

=
ω4

16π

(
1+2n ω

2

){
g4 +

g6Nc

(4π)2

[
22
3

ln
Λ̄2

ω2 +
73
3
+8φ

θ
T (ω/T )

]}
+O(g8) , (2.1)

ρη(ω)

4dA
=

ω4

4π

(
1+2n ω

2

){
− 1

10
+

g2Nc

(4π)2

[
2
9
+φ

η

T (ω/T )
]}

+O(g4) , (2.2)

where dA ≡ N2
c − 1, cθ = 11Nc/(6(4π)2)+O(g2) is a normalization constant, and the functions

φT (ω/T ) must be determined numerically. The behavior of these quantities is displayed for the
case of Nc = 3 in fig. 1, with the renormalization scale varied by a factor of 2 around an optimal
value (see [23, 24] for details). For the case of the bulk channel, we have furthermore performed a
Hard Thermal Loop type resummation for frequencies ω =O(gT ) and smaller, producing a visible
modification of the IR behavior of the quantity.

As can be seen from the results, convergence in both channels is good as long as ω & T , being
particularly impressive in the shear case. This can be attributed to the small relative size of the
NLO T = 0 correction2 as well as to the fact that the leading T -dependent terms contributing to the
function φ

η

T (ω/T ) vanish. In fact, it can be shown that in the ω → ∞ limit this function behaves

2See also [31] for the next few orders in the zero-temperature result.
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Figure 3: A comparison of the O(g6) perturbative and lattice results for the imaginary time correlator in the
bulk channel of SU(3) Yang-Mills theory.

as O(T 6/ω6), consistently with the arguments of [32]. For smaller values of ω , the convergence
of perturbation theory clearly deteriorates, as is evident from the large relative size of the NLO
corrections. In the case of the shear channel, the spectral function even changes its sign at ω ≈
0.6T , moving from negative to positive values; this clearly signifies the complete breakdown of our
weak coupling expansion.

Two natural applications of our results can be found in sum rules [33, 34] and Euclidean imag-
inary time correlators. Concentrating on the latter, we insert the bulk and shear spectral functions
into the relation

G(τ) =
∫

∞

0

dω

π
ρ(ω)

cosh
[(

β

2 − τ

)
ω

]
sinh βω

2

, 0 < τ < β , (2.3)

obtaining the quantities shown in fig. 2. Again, we see a remarkable degree of convergence in
particular in the shear case, where the LO and NLO curves practically overlap. In the bulk channel,
we may further compare the result to the lattice data of [35], demonstrating the cancelation of the
UV (small τ) divergence in the difference of the two quantities. This, in fact, is the very reason why
perturbative calculations are hoped to be of use in the analytic continuation of Euclidean lattice data
to Minkowskian signature, cf. e.g. [26].

3. AdS/CFT duality and IHQCD

Moving on to the strong coupling side, we note that spectral functions corresponding to various
components of the energy momentum tensor of N = 4 Super Yang-Mills theory and its variants
have been considered using holographic methods in several works, including e.g. [14, 15, 16, 17,
18, 19]. Here, we restrict our attention to one specific five-dimensional model conjectured to be
dual to nonsupersymmetric large-Nc Yang-Mills theory, the gravity/dilaton system IHQCD [20].
Within this model, the shear channel spectral function was considered recently in [19], while the
bulk channel will be covered in a forthcoming paper [25].
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Figure 4: The shear channel spectral function as a function of ω , evaluated for a variety of temperatures
in the holographic IHQCD model. On the right, the asymptotic (T=0) limit has been subtracted from the
quantity, revealing a more complicated nonmonotonous behavior. See [19] for more details.

Beginning from the shear case of [19], we display in fig. 4 the behavior of the spectral function
for various values of the temperature, given in units of the IHQCD deconfinement transition tem-
perature Tc. As is customary in holographic calculations, the evaluation of the retarded correlator
reduces to solving a fluctuation equation for the field dual to the boundary operator in question. For
the energy momentum tensor, the dual fields are components of the five-dimensional metric tensor,
in this case its 12 component. As can be seen from the left part of fig. 4, the spectral function auto-
matically reproduces the famous holographic prediction η/s = 1/(4π), while on the right we close
in on the temperature dependent part of ρ . It is interesting to contrast these predictions with the
corresponding results obtained for the conformal N = 4 SYM theory in [18] as well for weakly
coupled SU(N) Yang-Mills theory in [24]; a detailed account of these issues will appear soon [25].

Moving finally on to the bulk spectral function, the unpublished results of [25] show impres-
sive agreement with not only the UV limit of the perturbative spectral function in SU(3) Yang-
Mills theory, but also the Euclidean imaginary time correlator evaluated on the lattice [35]. This is
demonstrated in fig. 5, where we first plot the spectral function on a logarithmic scale and next to
it the imaginary time correlator. Two details to note are the automatic agreement of the UV limits
in the first plot (i.e. without any rescalings of the quantity), as well as the remarkable agreement of
the three largest datapoints in the second. It should be highly interesting to extend this comparison
to a wider range of temperatures to test the robustness of the agreement.

4. Conclusions and future directions

In this talk, we have presented and discussed a set of recent results concerning the behavior of
the bulk and shear channel spectral functions in thermal SU(N) Yang-Mills theory. These quanti-
ties are crucial ingredients in the description of a (near-)equilibrium quark gluon plasma, as they
allow the determination of the corresponding transport coefficients, the bulk and shear viscosities.
Unfortunately, the nonperturbative evaluation of these functions via lattice QCD is a notoriously
challenging problem, and to this end, any input one can gather via weak coupling or gauge/gravity
methods is extremely valuable. In particular, perturbation theory may turn out to be of direct use in
the analytic continuation of Euclidean lattice data to Minkowskian signature, as recently demon-
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Figure 5: Left: A comparison of the IHQCD (black curve) and NLO perturbative (red dashed curves)
predictions for the bulk channel spectral function, with the former corresponding to the large-Nc limit and
the latter to Nc = 3. Right: A similar comparison of the imaginary time correlator, with the blue dots
corresponding to the Nc = 3 lattice data of [35].

strated in [26, 27, 28]. Our hope is indeed that our perturbative spectral functions, derived in
[23, 24] and discussed in the above sec. 2, will turn out to be useful in this process.

While some important developments have recently been reached within both the lattice and
perturbative fronts, we are currently still some way from obtaining accurate first principles results
for the QGP transport coefficients in a temperature range relevant for heavy ion physics. In the
meantime, the results reported in this talk can, however, also be used to evaluate various Euclidean
correlators, facilitating a direct comparison between lattice, perturbation theory and gauge/gravity
methods. As demonstrated in sec. 3 and discussed in more detail in a forthcoming paper [25],
this offers a new and interesting tool for addressing such questions as the weakly/strongly coupled
nature of the QGP near the deconfinement transition.
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