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1. Introduction

Classical QCD Lagrangian in the limit of massless quarks is chirally symmetric. It is known,
however, that the quantum-mechanical vacuum fluctuation causes the breakdown of the symmetry.
As a consequence, SU(3) flavor singlet axial-vector current is no longer conserved, a phenomenal
called the UA(1) anomaly. Then the corresponding Goldstone mode acquires unexpectedly large
mass, which is η ′-meson of mass near 1GeV in vacuum. The breaking of the UA(1) symmetry is
an operator relation which remains valid even when the spontaneously broken chiral symmetry is
restored. However, it has been a phenomenological question [1, 2, 3, 4, 5] if its effect on the η ′ mass
survives even at the chirally restored phase of QCD. The question has recently revived as the RHIC
data on the two pion Bose-Einstein correlation at

√
s = 200GeV Au+Au colision seems to suggest

the quenching of the η ′ mass in medium [6, 7, 8]. Its partial quenching in nuclear medium is also
of great interest as such effects could be probed in finer detail in nuclear target experiments [9, 10].

It has been clarified [3, 4, 5] how the chiral symmetry and topological configurations contribute
to the restoration of UA(1) symmetry. It was shown that in the chiral limit, with N f flavors, the
symmetry will effectively restored in correlation functions composed of up to N f − 1 points [11].
However, the argument is still based on correlation functions and does not explicitly relate the η ′

mass to the other pseudoscalar masses. To establish this relation, we revisit the Witten-Veneziano
(WV) mass relation [12, 13] for the η ′ mass in vacuum and generalize it to finite temperature. All
contents are based on Ref. [14] in which more detailed discussions can be found.

2. Witten-Veneziano formula

We start with reviewing the derivation of the WV mass formula [12, 13].

U(k) = i
∫

d4xeik·x⟨T GG̃(x)GG̃(0)⟩. (2.1)

One should note that, in the large Nc limit, Eq. (2.1) is of order N2
c , as can be seen by the two

loops representing two gluon lines in Fig. 1-(a). There is also a well known low energy theorem
for the correlation function at zero external momentum U(k = 0) ̸= 0. However, when massless
quarks are added to the theory, the low energy theorem leads to the vanishing correlation function
U(k = 0) = 0 through the anomaly relation that relates the pseudo-scalar gluon current to axial
current. The light quark effects Uq, however, are suppressed in 1/Nc compared to the pure gluonic
contributions Ug. The only quark effect that survives here comes from η ′-meson of which mass
squared is assumed to be of order 1/Nc. Then, to make sense of U(0) = Ug(0)+Uq(0) = 0, the
gluonic part Ug(0) of Eq. (2.1) can be represented in terms of the η ′ mass, otherwise suppressed in
1/Nc:

Ug(0) =−|⟨0|GG̃|η ′⟩|2

m2
η ′

=
N2

c

4N f
m2

η ′ f 2
π

(
4π2

αs

)2

(2.2)

where we made use of fη ′ = fπ to the lowest order in Nc. Eq. (2.2) is the celebrated WV formula.
At finite temperature, the thermal correction to Eq. (2.2) comes from the interactions with

thermal gluons or quarks. The contribution from thermal gluons scales as N2
c as can be seen in
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Fig. 1-(b). On the other hand, for external quark effects, it is of Nc order in Fig. 1-(c). And corre-
sponding mesonic parts (Fig. 1-(d) and (e)) with thermal interactions are suppressed in comparison
with the gluonic parts in large Nc limit. Therefore the same argument holds as in the vacuum.
Namely, the additions of quark somehow have to cancel the leading Nc behavior at k = 0. This
cancelation cannot be done by collective states, as quark collective states are also suppressed in
1/Nc, and hence it has to come from a modified η ′-contribution. The the WV formula still holds
at finite temperature as in the vacuum. If we are in the confined phase, same arguments suggestes
that, at finite density, the effects of nucleons are suppressed at the large Nc limit as the effects of
the quarks.

3. Low energy theorem

Now, U0(0) can be obtained from the low energy theorem. Here we use the derivation using
the heavy quark expansion [15].

Ug(0) =−16π2

9g2
s

d
d(−1/4g2

s )

⟨αs

π
G2

⟩
. (3.1)

And also by using the renormalizaion group argument, any matrix element with canonical dimen-
sion d should be proportional to the d th power of the scale:

⟨O⟩T,µ = const
[

M0 exp
(
−8π2

bg2
s

)]d

f (T,µ), (3.2)

where b = 11− 2
3 N f and M0 is the ultraviolet cutoff [16]. Here an arbitrary function, f (T,µ), of

extra scales has been introduced to generalize this argument to the finite temperature and density
case.

By inserting Eq. (3.2) into Eq. (3.1), it becomes as follows:

Ug(0) =
2
9b

(
16π2

g2
s

)2(
4−T

∂
∂T

−µ
∂

∂ µ

)⟨αs

π
G2

⟩
T,µ

. (3.3)

Figure 1: The diagrams of the correlation function in double-line notation: (a) representing two gluon lines
in a vacuum, (b) gluonic and (d) mesonic parts of the correlation function interacting with thermal gluons,
(c) gluonic and (e) mesonic parts interacting with external quarks.
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Figure 2: T -dependence of gluon condensate and its derivative fitted to Wuppertal-Budapest lattice data in
full QCD.

Finally combining Eq. (2.2) and Eq. (3.3) with µ = 0, one finds(
3αs

4π

)2 |⟨0|GG̃|η ′⟩|2

m2
η ′

m2
η ′ f 2

π =
2
b

(
4−T

∂
∂T

)⟨αs

π
G2

⟩
T
. (3.4)

The effect of subtracting out the second term in Eq. (3.4) is to get rid of the perturbative correction.
The leading perturbative correction to the gluon condensate is proportional to g4(T )T 4 [17, 18].
Therefore, assuming that the temperature dependence is of the following form,⟨αs

π
G2

⟩
T
= G0(T )+ag4

s T 4, (3.5)

we find (
4−T

∂
∂T

)⟨α
π

G2
⟩

T
=

(
4−T

∂
∂T

)
G0(T ), (3.6)

if the temperature dependence of gs is neglected. The only temperature dependence that survives
is G0(T ), whose scale dependence is coming from dimensional transmutation and not from the
external temperature only. It is the nonperturbative part which dominates the behavior of the right-
hand side of Eq. (3.4).

In the dotted line of Fig. 2, we show a resonance gas model result for the gluon condensate [19],
which has been fit to reproduce the Wuppertal-Budapest’s full QCD data of the trace anomaly [20]:
the gluon condensate part is obtained by taking the chiral limit in the resonance gas model, which
corresponds to subtracting out the fermion part in the trace anomaly. The dashed and solid lines
are obtained by operating on the T -dependent operators as need in Eq. (3.4).

4. η ′ mass at finite temperature

The final step in obtaining the mass of η ′, when chiral symmetry is restored, is estimating the
change fo the coupling ⟨0|GG̃|η ′⟩. For that purpose, let us consider U(k) in Eq. (2.1) in the full
theory, but rewrite it in terms of the quark axial current using the anomaly relation.

U(k) = i
∫

d4xeik·x⟨T GG̃(x)GG̃(0)⟩

= kµkν i
∫

d4xeik·x
(

4π
αsN f

)[
⟨T q̄iγµγ5q(x) q̄iγνγ5q(0)⟩−⟨T q̄γµq(x) q̄γνq(0)⟩

]
, (4.1)
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where we have subtracted out the contribution from the conserved vector current. Using the pre-
vious terminology, when chiral symmetry is restored, the connected piece will cancel, as they are
the same as the difference between flavored chiral partners, and only the disconnected pieces will
remain. Assuming that the spectral sum starts from the η ′, we find Eq. (4.1) can be written as
follows:

U(k) = −|⟨0|GG̃|η ′⟩|2

k2 −m2
η ′

−·· ·

∝
∫ [

Tr[SA(x,x)iγµγ5]Tr[SA(0,0)iγνγ5]−Tr[SA(x,x)γµ ]Tr[SA(0,0)γν ]

]
. (4.2)

However, the disconnected pieces are all of the same order in mq when chiral symmetry is restored.

Tr[SA(x,x)]∼ Tr[SA(x,x)Γ]∼ O(mq), (4.3)

where Γ is a Hermitian gamma matrix. This is so because the chiral order parameter can be written
as ⟨q̄q⟩=− 1

Z

∫
dµ Tr[SA(0,0] =−πρ(λ = 0), the density of zero eigenvalues of the Dirac operator

in the presence of the gauge field [21]. Therefore, using the spectral representation, we find that

⟨0|GG̃(x)|η ′⟩ ∼ O(mq), (4.4)

when chiral symmetry is restored. Therefore, going back to Eq. (3.4), we find that, when chiral
symmetry is restored,

m2
η ′ =

(
3αs

4π

)2 |⟨0|GG̃|η ′⟩2|
2
b

(
d −T ∂

∂T

)⟨α
π G2

⟩
T

⟨q̄q⟩→0−→ 0. (4.5)

Therefore, one can conclude that in QCD large Nc limit, η ′ mass will become degenerate with
the other goldstone bosons.

5. Conclusions

It should be noted that the η ′ mass that is being quenched is the part of that comes from the
breaking of the UA(1) part. Going back to Eq. (2.2) and substituting the vacuum value of Eq. (3.3)
one find,

mη ′ =

√
8

33
1
fπ
⟨α

π
G2⟩ ≈ 464MeV, (5.1)

where we have used fπ = 130MeV and ⟨α
π G2⟩ = (0.35GeV)4. This is smaller than the vacuum

value of the η ′ mass as expected. Assuming that the pseudo scalar mesons do not change their
mass towards the phase transition point, it is this extra UA(1) mass of η ′ that is going to quenched
in the chiral symmetry restored phase. At this stage, it is hard to make a quantitative estimate on
how this mass is partially restored in the nuclear medium. However, from Eq. (4.2) we can to first
approximation assume that the ⟨0|GG̃|η ′⟩ ∝ Tr[SA(x,x)] ∝ ⟨q̄q⟩ and then using Eq. (3.4) deduce
mη ′ ∝ ⟨q̄q⟩. Therefore, if the chiral order parameter reduces by 20% in nuclear medium the UA(1)
breaking part of the η ′ mass will also reduce by the same fraction.
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