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Characterization of the pure-glue phase in QCD. Gwendolyn Lacroix

1. Introduction

The thermodynamic features of Yang-Mills plasma with arbitrary gauge groups are studied
by resorting to a T -matrix approach [1]. The equation of state (EoS) is then computed thanks
to the Dashen, Ma and Bernstein’s formulation of statistical mechanics in terms of the S-matrix
(or T -matrix) [2]. Such a formulation is particularly well suited for systems whose microscopic
constituents behave according to relativistic quantum mechanics. Indeed, within the Yang-Mills
plasma, gluons (adjoint particles) are seen as the effective degrees of freedom. Moreover, the
use of a T -matrix formulation allows us to investigate the temperature range where the matter is
strongly interacting. This strong interaction means here that glueballs are expected to still survive
above Tc.

Altough the approach is formulated for any gauge group, the focus is on SU(N) and the large-
N limit, and on G2 because comparisons with pure-gauge lattice data [3, 4] and G2 models [5] can
be drawn.

The proceeding is organized as follows. Sec. 2 is dedicated to the presentation of quasiparticle
approach that we have used to describe the thermodynamic features of the Yang-Mills plasma.
Note that a more general presentation of the quasiparticle approach including quarks is developed
in [1]. The existence of bound states inside the gluon plama is discussed in Sec. 3 as well as the
computation of the EoS. Finally, Sec. 4 is devoted to conclusions and perspectives.

2. Quasiparticle approach for a Yang-Mills plasma

Within our approach, the thermodynamic features of the Yang-Mills plasma are studied thanks
to the use of the T -matrix and then, the grand canonical potential is computed by using the formal-
ism presented in [2]. A summary of these two main steps is presented hereafter.

2.1 T -matrix and Lippmann-Schwinger equation

To obtain the T -matrix of the system, the Lippmann-Schwinger equation for the off-shell T -
matrix (T ), schematically given by

T =V +V G0 T with G0 the free propagator, (2.1)

has to be solved for all the channels that we consider. A crucial ingredient of (2.1) is the interaction
potential, V . In the present quasiparticle approach, we have made the choice to use a two-body
potential directly provided by lattice QCD. Indeed, accurate computations of the quenched SU(3)
static free energy of a quark-antiquark pair bound in a color singlet, F1(r,T ), are available in [6].

Since we only consider the gluon plasma, we have to transpose F1(r,T ) from a quark-antiquark
pair to a gluon-gluon one. For that, we assume the Casimir scaling in order to extract the color de-
pendence from the potential. Following the arguments proposed in [1] and by introducing quadratic
Casimirs (C2), V has schematically the form

VC = κC v, (2.2)
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where C is the pair representation and

κC ;R1R2 =
CC

2 −CR1
2 −CR2

2

2Cad j
2

, (2.3)

where Cad j
2 and CRi

2 are respectively the quadratic Casimirs of the adjoint representation and of
the representation of the particle i. The real function v is assumed not to depend on color factors
anymore. The validity of this assumption has partially been checked in pure gauge SU(3) lattice
calculations [7].

However, it still remains a debate on the fact that the proper potential term to use in phe-
nomenological approaches is F1 or the internal energy U1 = F1−T ∂T F1. Since an entropic con-
tribution is subtracted from F1 in U1, causing U1 to be more attractive than F1, eventually leading
to larger dissociation temperatures for bound states in the deconfined medium, U1 is thus used as
potential term here. The explicit fitted expression of the internal energy U1 used in this work can
be found in the Appendix A of [1].

According to (2.2) and using U1(r,T ) extracted from quenched SU(3) lattice data for a quark-
antiquark pair, the potential between two quasigluons in the color channel C is then given by

V (r,T ) =
κC ;gg

κ•;qq̄
[U1(r,T )−U1(∞,T )] , (2.4)

where the long-distance limit of the potential has to be normalized to zero in order to ensure the
convergence of the scattering equation and to perform the Fourier transform of V (r,T ) by using the
formula

V (q,q′,θq,q′) = 4π

∫
∞

0
dr rV (r)

sin(Qr)
Q

, where Q =
√

q2 +q′2−2qq′ cosθq,q′ , (2.5)

and where θq,q′ is the angle between the momenta~q and~q ′.
Nevertheless, in the above formula, we have to pay attention to the fact that, since the gluons

are particles of helicity 1, the basis states that we have to use are two-gluon helicity states (see
[8]). As we assume V to be spin independent, only the orbital angular momentum content of the
helicity states has to be taken into account. According to a standard integration, the L-wave part of
potential (2.5) reads

VL(q,q′) = 2π

∫ 1

−1
dxPL(x)V (q,q′,x), (2.6)

where PL is the Legendre polynomial of order L and x = cosθq,q′ . Our choice is to focus on the
scalar, pseudoscalar and tensor JP channels since they are the ligthest ones and thus, the most likely
to form bound states. The potentials for each helicity channel are respectively

V0+(q,q
′) =

2
3

V0(q,q′)+
1
3

V2(q,q′), (2.7)

V0−(q,q
′) = V1(q,q′), (2.8)

V2+(q,q
′) =

2
5

V0(q,q′)+
4
7

V2(q,q′)+
1
35

V4(q,q′). (2.9)

Once VJP(q,q′) is known, the off-shell T -matrix can be computed from (2.1) as follows in [9]:

T (E;q,q′) =VJP(q,q′)+
1

8π3

∫
∞

0
dk k2VJP(q,k)G0(E;k)T (E;k,q′), (2.10)
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where E is the total energy in the center of mass frame and the two-gluon propagator reads

G0(E;k) =
m2

g

ε(k)
1

E2/4− ε(k)2−2iε(k)ΣI
(2.11)

with the gluon dispersion relation ε(k) =
√

k2 +m2
g. Note that the normalization conventions of

the T -matrix are explained in details in [1]. The parameter ΣI accounts for the imaginary part of
the gluon self-interaction, whereas the real part is reabsorbed in the effective gluon mass. In the
present case, we approximate the small imaginary part for numerical purposes by ΣI = 0.01 GeV
as in [9]. For the effective gluon mass, we follow the suggestion made in [10]: The nonzero value
of U1(∞,T ) should eventually be responsible of an effective in-medium contribution to the gluon
mass. The intuitive argument is that, when both gluons are infinitely separated, they no longer
interact. Therefore, the remaining potential energy should be seen as a manifestation of self-energy
effects induced by the surrounding medium. These effects are encoded in the model as a mass shift
from the “bare” quasigluon mass, whose value has still to be fixed.

Since U1(∞,T ) = 2mq(T ), the adaptation to the gluon case must be done by extracting the
correct color-dependence. From HTL computations [11], the self-energy color dependence is given
by Cq

2/Cad j
2 at the first order when it is added in the propagator as a mass term (m2), that means

here that
U1(∞,T )

2
= mq(T ) =

√
Cq

2

Cad j
2

∆(T ). (2.12)

So, mq(T ) = 2∆(T )/3 in the SU(3) case where ∆(T ) is considered as universal. The gluon thermal
mass thus reads

δ (T ) =

√
Cg

2

Cad j
2

∆(T ) = ∆(T ), (2.13)

since Cg
2 = Cad j

2 . So, δ (T ) is gauge-group independent. The effective in-medium gluon mass is
finally given in our approach as

mg(T )2 = m2
0 +δ (T )2. (2.14)

where the value m0 is fitted to 0.7 GeV in order to reproduce the zero-temperature glueball masses
(see [1]). Moreover, m0 is a typical value for the zero-momentum limit of the gluon propagator at
zero temperature. All the contributions are quadratically added as it is the case when one is dealing
with bosonic propagators. The gluon mass is thus gauge-group independent.

It is obvious that the problem of the gluon mass is far more complicated than the simple pre-
scription (2.14), that has to be seen as valid in a first approximation only. Indeed, some evidences
seem to show us that a more refined gluon mass should probably be momentum-dependent [12, 13].

The above discussion gives a more precise meaning to the term “quasigluons” used in this
paper: It denotes transverse particles in the adjoint representation of SU(N) that gain an effective
mass mg(T ) given by (2.14) and interact through the potential (2.4).

Using all these prescriptions, we can finally compute T (E;q,q′). In practise, the Haftel-
Tabakin algorithm is used to solve (2.10) [14] and the on-shell T -matrix is readily obtained as
T (E;qE ,qE), with qE =

√
E2/4−m2

g.
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2.2 Grand canonical potential

According to [2] and by following the procedure presented in [1], the grand canonical potential
for the Yang-Mill plasma with an arbitrary gauge group reads

Ω = 2dimad j ω0(mg)+∑
C

∑
JP

dimC (2J+1)

{
ω0(MC ,JP) (2.15)

+
1

2π2β 2

∫
∞

2mg

dε ε
2 K2(βε)TrC ,JP

[
(δReT )′−2π

(
(δReT )(δ ImT )′− (δ ImT )(δReT )′

)]}
.

This formula takes only into account the two-body interactions since they are expected to be the
dominant scattering processes.

The first term of (2.15) is the free ideal quasigluon gas; dimad j is the dimension of the adjoint
representation and

ω0(m) =
1

2π2β

∫
∞

0
dk k2 ln

(
1− e−β

√
k2+m2

)
(2.16)

is the grand potential per degree of freedom associated to the gluon. The second and third parts
of (2.15) respectively represent the glueball and scattering contributions to the thermodynamics.
Glueballs are considered as new free species inside the plasma with mass MC ,JP . The glueball
mass is the energy associated to a pole in the on-shell T -matrix T (E;qE ,qE). The equation (2.10)
must be solved for all channels in which two gluons can interact in order to compute the summation
in (2.15). These channels are labelled by the JP number and the color representation, C ; dimC

is the dimension of color representation. In the remaining trace of (2.15), it is understood that the
T -matrix has been computed in a given two-body channel with color C and quantum number JP,
and that the Dirac δ reads δ (ε − 2ε(q)). Notice that K2(x) is the modified Bessel function of the
second kind, that β = 1/T , and that the symbol “prime” is the derivative respective to the energy.

3. Results

This section is divided into two parts: The existence of the glueballs above Tc and the compu-
tation of the EoS. We focus our study on the ligthest glueballs: The scalar, pseudoscalar and tensor
ones, and on SU(N) and G2 cases since they are the most studied groups in the literature. Since we
consider the two-gluon interactions, the color channels that we have to consider are simply given
by the tensor product of the adjoint representation by itself.
For SU(N) case:

(1,0, . . . ,0,1) ⊗ (1,0, . . . ,0,1) =

•S⊕ (1,0, . . . ,0,1)A⊕ (2,0, . . . ,0,2)S N ≥ 2

⊕(1,0, . . . ,0,1)S⊕ (0,1,0, . . . ,0,2)A⊕ (2,0, . . . ,1,0)A N ≥ 3

⊕(0,1,0, . . . ,0,1,0)S N ≥ 4. (3.1)

For G2 case:
(0,1)⊗ (0,1) = •S⊕ (0,1)A⊕ (0,2)S⊕ (2,0)S⊕ (3,0)A. (3.2)

5
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Table 1: Masses (in units of
√

σ = 0.42 GeV) of lowest-lying glueballs above Tc (Tc = 0.3 GeV). A dash
marks the temperature at which either the bound or resonant states is not detected anymore.

Channel Singlet Adjoints (2,0)s

Group All SU(N ≥ 3) G2

T/Tc 2 mg 0++ 0−+ 2++ 0++ 0−+ 2++ 0++ 0−+ 2++

1.05 6.50 4.52 5.43 5.43 6.00 6.45 6.31 6.14 - 6.38
6.48

1.10 5.24 4.57 5.21 5.00 5.14 - - 5.21 -
1.15 4.71 4.43 - 4.67 -
1.20 4.43 4.33 -
1.25 4.26 4.24
1.30 4.14 -
1.35 -

The superscript S/A denotes a symmetric/antisymmetric channel. The first/second/third line in the
SU(N) case exists as soon as N ≥ 2/3/4. The dimensions and color factors of the representations
appearing in (3.1) and (3.2) can be found in [1]. Note that only the symmetric representations of
(3.1) and (3.2) will be taken into account in what follows since the JP channels that we consider
are symmetric and Pauli’s principle has to be respected.

3.1 Existence of glueballs above Tc

The bound and resonant states appear as poles in the on-shell T -matrix as previously men-
tionned. The corresponding masses are given in Table 1 in the different considered color and JP

channels. We can notice that the masses of the color-singlet are the same for SU(N) at all N and G2

since, κC ;• = −1 for all gauge groups in the color-singlet channel and the gluon mass is indepen-
dent of N. It can be also observed that the color-singlet channel survives up to 1.3 Tc in the 0+ case
(the most attractive JP channel). In the other color channels, the melting is quicklier due to the less
bounded potential. Indeed, κC ≥−1 in the other attractive color channels.

Figure 1: ImT for gg scattering in the 0++ singlet channel for various T with Tc = 0.3 GeV.
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The evolution of the imaginary part of the on-shell T -matrix in the singlet scalar channel versus
the temperature is displayed in Fig. 1: This gives an overall picture of the glueball progressive
dissolution in the medium. The peak in the imaginary part, depicting a bound state, becomes
broader and broader before melting into the continuum as the temperature is increased.

3.2 Equation of state

Using (2.15), the EoS can be computed. Then, the pressure is simply given by p = −Ω.
To establish more easily the comparison between our approach, lattice QCD and G2 models, the
pressure is normalized to the Stefan-Boltzmann pressure which is defined as

pSB =−2dim ad j lim
m→0

ω0(m) (3.3)

1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

T � Tc

p
�p

SB

G 2

SU H ¥L
SU H 3L
SU H 2 L
G 2 min

SU H 8 L Lat

SU H 6 L Lat

SU H 4 L Lat

SU H 3L Lat

SU H 2 L Lat

Figure 2: Normalized pressure versus temperature in units of Tc (with Tc = 0.3 GeV), computed for the
gauge groups SU(2,3,∞) and G2 (solid lines). Note that all the curves are nearly indistinguishable. Our
results are compared to the lattice data of [3] for SU(2) (dots) and [4] for SU(3,4,6,8) (dots), and of the
minimal G2 model of [5] for G2 (dashed line).

In Fig. 2, the normalized pressure are presented for different gauge groups: SU(2), SU(3),
SU(∞) and G2. Severals remarks can be done. First, the free gluon thermodynamic contribution
is gauge-group invariant once normalized to pSB. The gauge-group dependence is only present in
the bound state and scattering sectors. The number of allowed color channels (i.e. the symmetric
ones) depends on the gauge group (see (3.1)) and determines the allowed maximum number of
bound states and the number of scattering channels. The bound state thermodynamic contribution
comes from two effets: The number and the mass of the existing glueballs. Because of the glueball
dissociation, this contribution is only taken into account up to the temperature of dissociation (see
Table 1). One can observe in Fig. 2 that the computed EoS are not very sensitive to the gauge-
group. The most important difference between the curves occurs between 1.05 and 1.35 Tc: In
this range, the gluon-gluon interactions are maximal. When the temperature increases, the Born
approximation becomes more and more valid and the pressure then scales as dim ad j. Thus the
normalized pressure tends to be universal.
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In Fig 2, it is also worth noticing that the EoS computed in our approach favorably compares
with QCD lattice data for gauge groups SU(3-8) [4] where such universal curves seem to appear.
For SU(2) [3], our results seems to underestimate the lattice computations. Nevertheless, it is
important to notice that the available SU(2) lattice data are not recent and therefore, they are maybe
not the most accurate and reliable ones. Concerning G2, no lattice data about EoS are currently
available but a new effective matrix model describing pure Yang-Mills thermodynamics has been
proposed in [5]. These last results are compared to ours in Fig 2.

4. Conclusions

The relevance of gluon-gluon interactions beyond the critical temperature in the pure gauge
SU(3) plasma has been addressed in a non-perturbative T -matrix framework with the input of
(Casimir-scaled) potentials from thermal lattice QCD and a model of quasigluon mass independent
of the gauge group. Scalar glueball bound states in the singlet channel survive up to temperatures
of about 1.3-1.5 Tc, together with sizable threshold effects due to strong correlations beyond the
two-particle threshold. The EoS of the gluon-glueball gas is reproduced in good agreement with
quenched lattice SU(N) simulations and with the predictions from G2 models.

A natural extension to this paper is to study the light meson spectrum at finite temperature and
the QCD EoS by including quarks within the model. Computations with baryonic potential can be
also considered.
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