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Thermodynamic properties of QCD in external
magnetic fields
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We consider the effect of strong external electromagnetic fields on thermodynamic observables
in QCD, through lattice simulations with 1+1+1 flavors of staggered quarks at physical quark
masses. Continuum extrapolated results are presented for the light quark condensates and for
their tensor polarizations, as functions of the temperature and the magnetic field. We find the
light condensates to undergo inverse magnetic catalysis in the transition region, in a manner that
the transition temperature decreases with growing magnetic field. We also compare the results
to other approaches and lattice simulations. Furthermore, we relate the tensor polarization to the
spin part of the magnetic susceptibility of the QCD vacuum, and show that this contribution is
diamagnetic.
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Thermodynamic properties of QCD in external magnetic fields

1. Introduction

Strong electromagnetic fields represent an important ingredient for the description of various
strong interaction systems including non-central heavy-ion collisions, the interior of dense neutron
stars (magnetars) and the cosmology of the early universe. The external magnetic field in these
situations is expected to have a magnitude reaching up to the hadronic scale, such that its cou-
pling to charged quarks and the color interaction between the latter compete with each other. This
competition gives rise to an interplay between the strong and electromagnetic dynamics, producing
various new phenomena. We will restrict ourselves to the idealized situation of constant external
magnetic fields in thermal equilibrium. In fact, such magnetic fields probe the QCD vacuum in
several aspects, by affecting its fundamental properties like chiral symmetry breaking and restora-
tion, (de)confinement and hence the phase diagram, as well as the vacuum polarization and other
quantities.

At vanishing quark density, the transition of QCD at the physical values of the quark masses
is a crossover [1] with transition temperatures, that may depend on the observable used for its def-
inition. Here we focus on quark condensates, pseudo-order parameters related to the breaking of
chiral symmetry, and the magnetic susceptiblities, relevant for various phenomenological applica-
tions, in external magnetic fields. The renormalization of both will be defined, numerical results
are presented for zero and nonzero temperatures and compared to results from other approaches.
While the most important effects in the condensates are the inverse magnetic catalysis around the
transition and the transition temperature decreasing with the magnetic field, the magnetic suscep-
tibility contains information about the spin contribution to the para- or diamagnetic nature of the
QCD vacuum. In these talks we summarize our publications [2, 3, 4], adding another plot for the
continuum limit of the condensate (Fig. 4, right panel) and a few new comments.

1.1 Magnetic catalysis and inverse magnetic catalysis

A particularly pronounced effect of the magnetic field on the QCD dynamics is the so-called
magnetic catalysis (MC) mechanism – the fact that the condensate increases with the external field
B [5, 6] at zero temperature. This behavior has been observed in various effective theory and model
calculations (for a recent review, see Ref. [7]), and has also been confirmed by lattice simulations
in quenched theories [8, 9], at larger than physical pion masses in N f = 2 QCD [10, 11] and in the
N f = 4 SU(2) theory [12], and at physical quark masses in full N f = 2+1 QCD [2].

While all effective descriptions and lattice simulations agree about MC at T = 0, the situation
becomes more complicated at finite temperature. As lattice simulations at physical quark masses
with results extrapolated to the continuum limit show, the condensate exhibits a non-monotonic
dependence on the magnetic field around Tc, with a certain region, where it actually decreases
with growing B [2]. This peculiar behavior we refer to as inverse magnetic catalysis (IMC). A
consequence of this non-trivial dependence ψ̄ψ(B,T ) is that the transition temperature Tc(B) is
reduced as the magnetic field increases. As it turns out, employing physical quark masses in the
simulation and extrapolating the results to the continuum limit – as was done in our studies – is
essential, as we will discuss. It is also highly important to address the differences between the lattice
QCD results and model and chiral perturbation theory (χPT) predictions, especially since the latter
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Thermodynamic properties of QCD in external magnetic fields

methods can be used to investigate regions that are not easily accessible to lattice simulations, e.g.,
QCD at a non-vanishing baryon density.

1.2 Paramagnetism and diamagnetism

Besides the influence of the magnetic field on chiral symmetry breaking, a fundamental aspect
of the coupling between the strong dynamics and B is given in terms of the response of the free
energy density,

f =−T
V

logZ , (1.1)

where Z is the partition function of the system and V the (three-dimensional) volume. Due to
rotational invariance, the B-dependence of f is to leading order quadratic, characterized by the
magnetic susceptibility of the QCD vacuum,

ξ =− ∂ 2 f
∂ (eB)2

∣∣∣∣
eB=0

, (1.2)

which is a dimensionless quantity (here e > 0 denotes the elementary charge). A positive suscep-
tibility indicates a decrease in f due to the magnetic field, that is to say, a paramagnetic response.
On the other hand, ξ < 0 is referred to as diamagnetism [13].

In the functional integral formalism of QCD, the susceptibility is readily split into spin- and
orbital angular momentum-related terms [4], according to

ξ = ∑
f

ξ f , ξ f = ξ
S
f +ξ

L
f , (1.3)

with contributions from each quark flavor f with electric charge q f and mass m f . For a constant
magnetic field B = Fxy in the positive z direction,

ξ
S
f =

q f /e
2m f

∂

∂ (eB)

〈
ψ̄ f σxyψ f

〉∣∣∣∣
eB=0

, σµν =
1
2i
[γµ ,γν ]. (1.4)

ξ L
f is given by an analogous expression with σxy replaced by a generalized angular momentum also

present for spinless particles [4]. Eq. (1.4) constitutes an important relation which, to our know-
ledge, has not been recognized previously in this context. Its derivation from the quark determinant
and the corresponding Dirac operator is given in Ref. [4].

Eqs. (1.3) and (1.4) also show how the magnetic response of the free energy density is re-
lated to the breaking of Lorentz symmetry by the external magnetic field. The presence of the
preferred direction (B ‖ z) induces a nonzero expectation value for the tensor polarization operator
ψ̄ f σµνψ f , which appears in the spin contribution to the susceptibility, Eq. (1.4). To leading order,
this expectation value is proportional to the field strength, and, thus, can be written as [14]〈

ψ̄ f σxyψ f
〉
= q f B ·

〈
ψ̄ f ψ f

〉
·χ f ≡ q f B · τ f , (1.5)

where the expectation value of the quark condensate appeared. In the literature, χ f is referred to
as the magnetic susceptibility of the condensate (for the quark flavor f ). In what follows, we will
also use the term “magnetic susceptibility”. Again, we stress that it constitutes only one of the two
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Thermodynamic properties of QCD in external magnetic fields

contributions to the total susceptibility. We also define the tensor coefficient τ f as the product of
the condensate and the magnetic susceptibility. At finite quark masses, it is advantageous to work
with τ f instead of χ f for reasons related to renormalization (see Sec. 2).

The magnetic susceptibility χ f , in the context of QCD, was first introduced in Ref. [14]. It is
a highly relevant quantity for experiments, since it appears in various effects [15, 16, 17, 18, 19].
In the past, the magnetic susceptibility has been calculated using different methods [20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31]. On the lattice, the numerical value of χ f was determined recently
in the quenched approximation of two- [32] and of three-color QCD [9], in both cases without
renormalization. In this talk we report about new results regarding the susceptibility, at physical
quark masses in full QCD [4].

An important remark regarding the magnetic susceptibility, which was not mentioned in Ref. [4],
is in order here. At vanishing temperature, electric charge renormalization ensures that the free en-
ergy to O(B2) is given solely by the energy of the external field itself, B2

r/2, where Br is the
renormalized magnetic field, see e.g. [33, 34]. Since this term is independent of the properties of
the medium (i.e., of the QCD vacuum), we do not take it into account, resulting in a vanishing
zero-temperature susceptibility,

ξ (T = 0) = 0, (1.6)

showing that at T = 0, the spin- and orbital momentum contributions are equal and of opposite
sign. At T > 0 this relation does not hold anymore, and the two terms become independent. Note
that O(B4) terms are already present in the free energy at T = 0, but these do not contribute to ξ .

2. Observables and renormalization

To realize the external magnetic field on the lattice, we implement the continuum U(1) gauge
field Aµ satisfying ∂xAy−∂yAx = B, using space-dependent complex phases (for our implementa-
tion, see [2]). This discretization satisfies periodic boundary conditions in the spatial directions,
and ensures that the magnetic flux across the x− y plane is constant (it is also quantized).

We consider three quark flavors u,d and s. Since the charges and masses of the quarks differ,
we have to treat each flavor separately; qu =−2qd =−2qs. Furthermore, we assume mu =md 6=ms.
The partition function in the staggered formulation then reads,

Z =
∫

DUe−βSg ∏
f=u,d,s

[detM(U,q f B,m f )]
1/4 , (2.1)

with M(U,qB,m) = /D(U,qB)+m1 being the fermion matrix and β = 6/g2 the gauge coupling.
The exact form of the action we use and details of the simulation setup are given in Ref. [2] and in
references there.

In this formulation, the expectation value of the quark condensate for the flavor f can be
written as 〈

ψ̄ f ψ f
〉
≡ T

V
∂ logZ

∂m f
=

T
4V

〈
TrM−1(U,q f B,m f )

〉
. (2.2)

Likewise, the expectation value of the tensor Dirac structure of Eq. (1.5) reads,〈
ψ̄ f σµνψ f

〉
=

T
4V

〈
TrM−1(U,q f B,m f )σµν

〉
. (2.3)
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Thermodynamic properties of QCD in external magnetic fields

In order to determine the continuum limit of the above observables, their renormalization has
to be performed. The quark condensate (at finite mass) is subject to additive and multiplicative
renormalization. All of these divergences – being independent of the temperature and of the mag-
netic field – cancel [2] in the following combination [3],

Σu,d(B,T ) =
2mud

M2
πF2 [ψ̄ψu,d(B,T )− ψ̄ψu,d(0,0)]+1, (2.4)

where, to obtain a dimensionless quantity, we divided by the combination M2
πF2 which contains

the zero-field pion mass Mπ = 135 MeV and (the chiral limit of the) pion decay constant F =

86 MeV [35]. This specific combination enters the Gell-Mann-Oakes-Renner relation,

2mud · ψ̄ψ(0,0) = M2
πF2 + · · · . (2.5)

The factor +1 is included in Eq. (2.4), so that the chiral limit of the condensate is fixed to 1 at
T = B = 0, and approaches 0 as T → ∞. At nonzero quark mass, Σu,d will still start from 1 at
T = B = 0.

We also define the change of the renormalized condensate due to the magnetic field as

∆Σu,d(B,T ) = Σu,d(B,T )−Σu,d(0,T ) =
2mud

M2
πF2 [ψ̄ψu,d(B,T )− ψ̄ψu,d(0,T )] . (2.6)

Note that the ψ̄ψ(0,0) term has canceled from this difference. Again, our normalization is such
that the change of the condensate is measured in units of the chiral condensate at B = 0 and T = 0.
This normalization will be advantageous when comparing the lattice results to χPT and model
predictions, which are usually given in units of ψ̄ψ(0,0).

The renormalization properties of the tensor polarization are somewhat different. As a calcu-
lation in the free theory shows, an additive divergence of the form ζT ·q f B ·m f log(m2

f a
2) appears

in
〈
ψ̄ f σµνψ f

〉
[4]. Moreover, there is a multiplicative divergence as well, which will be canceled

by the tensor renormalization constant ZT. Both ζT and ZT are independent of T and B (and in
mass-independent schemes of m f ). In the free theory, the coefficient of the logarithmic divergence
is calculated to be ζT(g = 0) = 3/(4π2) [4].

Due to the divergence structure of the condensate and of the tensor polarization, it is advan-
tageous to consider the tensor coefficient τ f defined in Eq. (1.5). We notice that the operator
1−m f ∂/∂m f eliminates the logarithmic divergence, and, thus, can be used to define an observable
with a finite continuum limit,

τ
r
f ≡
(

1−m f
∂

∂m f

)
τ f ·ZT ≡ τ f ZT− τ

div
f . (2.7)

At finite quark mass, this is one possible prescription to cancel the additive logarithmic term. It has
the advantages that the chiral limit of τ f is left unaffected, and that, together with the logarithmic
divergence, scheme-dependent finite terms also cancel in this difference [4], such that the scheme-
and renormalization scale-dependence of τ f resides solely in ZT. The latter renormalization con-
stant we calculate perturbatively, in the MS scheme at a renormalization scale of µ = 2 GeV. For
the details of the perturbative calculation, see Ref. [4].
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Thermodynamic properties of QCD in external magnetic fields

Figure 1: QCD phase diagram in the magnetic field-temperature plane. Shown is the transition temperature
Tc(B) obtained from the renormalized light condensates, Eq. (2.4), averaged over the u and d quark.

3. Results

We start with our main result, the QCD phase diagram in the B−T plane, Fig. 1. The transition
temperature from the renormalized condensate of the light quarks decreases by up to 20 MeV for
magnetic fields up to eB ' 1 GeV2. A similar behavior is found in the chiral susceptibility and
the strange quark number susceptibility as well [2]. We stress that these quantities are given in the
continuum limit extrapolated from Nt = 6, 8, 10 lattices using physical quark masses.

The transition remains a crossover up to our largest magnetic fields as we verify by the finite
volume scaling and the relative change in the T -dependence of the chiral susceptibility, Fig. 2.

Figure 2: Strength of the transition analyzed through the light susceptibility χu on Nt = 6 lattices, for details
see [2]. Neither the volume scaling (left) nor the relative change in the peak shape (right) show evidence for
a strengthening of the transition with the magnetic field, up to eB = 1 GeV2.
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Thermodynamic properties of QCD in external magnetic fields

Figure 3: Magnetic catalysis at zero temperature. Shown is the change in the average of the light conden-
sates, Eq. (2.6), due to the magnetic field using five lattice spacings and the extrapolation to the continuum
limit (left) and then in comparison with the NJL model [36] and chiral perturbation theory [37, 38] in the
low-B region (right).

We start our discussion of the light condensate at zero temperature. The two panels of Fig. 3
show our lattice data and the extrapolation to the continuum limit, and a comparison to the NJL
model and chiral perturbation theory. We confirm the increase of

〈
ψ̄ f ψ f

〉
with growing magnetic

field, the well-known magnetic catalysis. The NJL and χPT predictions agree quantitatively with
our data for eB . 0.3 GeV2 and eB . 0.1 GeV2, respectively. The limitation of these approaches
is not unexpected. The breakdown of the χPT prediction, for example, may be understood from
the fact that the QCD dynamics is less and less dominated by pions as B grows, and charged ρ±

mesons play a non-negligible role, cf. [34, 39].

Figure 4: Inverse magnetic catalysis at the QCD transition. The light condensate as a function of the
magnetic field for fixed temperatures (left) and as a function of T for fixed B (right) displays a non-monotonic
behavior with MC at zero temperature turning into IMC around Tc. The transition temperatures Tc(B) of this
observable are obtained from the inflection points in the right panel and hence can be seen to decrease with B.
The right plot is the continuum extrapolation of Fig. 1 in [40] (where a slighty different normalization was
used).
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Thermodynamic properties of QCD in external magnetic fields

Figure 5: Influence of the quark mass on the dependence Tc(B) of the (bare) light susceptibility on Nt = 6
lattices. For physical masses (left) the maximum moves to lower temperatures with the magnetic field,
whereas in the system with three quarks at the strange quark mass (right) no change in position of the
maximum is visible. This means that the effect of a decrease of Tc with B is washed out by heavier-than-
physical quark masses.

For temperatures around the transition, we show the dependence of the light condensate on the
magnetic field in Fig. 4. As advertised, the behavior is non-monotonic. In the temperature range
150-175 MeV the condensate decreases with the magnetic field, which is the inverse magnetic
catalysis. It is especially this behavior that is missing in almost all effective theories of QCD, see
e.g. the finite temperature comparison to a PNJL model and χPT in Fig. 4 of [3]; for a recent
attempt see [41]. From the right panel of Fig. 4, the decrease of the transition temperature with the
magnetic field is visible.

For the comparison to other lattice simulations of finite temperature gauge theories with mag-
netic fields in SU(3) [10] and SU(2) [12], we first stress that our lattice results have been extrap-
olated to the continuum limit. Another crucial difference to those simulations is the mass of the
quarks, which is physical only in our simulations. The consequences of this we have investigated
by artificially lifting the masses of the light quarks to the strange quark mass in our system, per-
forming new simulations. As Fig. 5 shows by virtue of the light susceptibility, no decrease in Tc

with the magnetic field can be found anymore. The effect of IMC is washed out by the heavy
quarks as well, cf. Fig. 5 lower panels in [2]. This mass dependence should, at least partially, be
responsible for the different results obtained in other lattice simulations [10, 12].

With the mass-degenerate light quarks employed here, isospin symmetry is exact at vanishing
field. At non-vanishing magnetic fields, however, this symmetry is broken by the quark charges
−2e/3 vs. e/3. Therefore, we also consider the difference of the light condensates, ∆Σu−∆Σd =

Σu−Σd . As Fig. 6 shows, this observable takes on nonzero expectation values and its temperature
dependence is similar to that of the average light condensate.

8
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Thermodynamic properties of QCD in external magnetic fields

Figure 6: Difference of the light condensates, ∆Σu−∆Σd =Σu−Σd signalling isospin breaking, as a function
of temperatures for different magnetic fields, in analogy to Fig. 4 right panel.

In the second part of this section, we present lattice data on the tensor polarization, again
continuum extrapolated, and compute the magnetic susceptibility χ f and the tensor coefficient τ f

as the leading order proportionality factors in Eq. (1.5).
First of all, Fig. 7 clearly reveals a linear growth of the tensor polarization

〈
ψ̄ f σxyψ f

〉
with the

magnetic field. Already from this figure it is clear that both χ f and τ f are negative, and that the spin
contribution to the QCD vacuum is, thus, of diamagnetic nature. This holds for all temperatures up
to 200 MeV. In solid state physics, where one is interested in the nature of positive energy electrons,
the spin is associated with paramagnetism. Here, however, we analyze the response of the QCD
vacuum, which is different, because, e.g., the vacuum energy for fermions is negative. For reviews
about the subject we refer the reader to Refs. [42, 43, 44].

The corresponding tensor coefficients at zero temperature are plotted in Fig. 8 as a function
of the light quark masses, that we varied between the physical value and the strange quark mass,

Figure 7: Negative tensor polarization as a function of the magnetic field for three temperatures near the
transition. The agreement between the data for different spatial volumes at T = 141 MeV indicates negligible
finite volume effects.

9
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Thermodynamic properties of QCD in external magnetic fields

Figure 8: Mass dependence of the combination −ZTτu in the MS scheme at renormalization scale µ = 2
GeV. The coefficient of the logarithmic divergence is determined by fitting the data by Eq. (3.1) (solid lines).

again through new dynamical simulations. These data have already been multiplied by the tensor
renormalization constant ZT (and −1), but still contain a divergence of the form log(m f a) as we
have discussed before Eq. (2.7). Correspondingly, we fit these data with coefficients c using

c0 + c1R+ c2R log(R2a2) , R = mud/mphys
ud , ci = c(0)i + c(1)i a2 , (3.1)

such that
τ

r
f = c f 0 +2c f 2m f . (3.2)

We remark that the coefficients of the logarithms, c(0)u2 /mphys
ud = 0.055(5) and c(0)d2 /mphys

ud = 0.072(6)
are quite close to the free-field value of 3/(4π2). As a result of these fits, we get the following
values for the renormalized tensor coefficients in the chiral limit,

τ
r
u =−40.3(1.4)MeV , τ

r
d =−38.9(1.5)MeV , (3.3)

and at physical quark masses,

τ
r
u =−40.7(1.3)MeV , τ

r
d =−39.4(1.4)MeV , τ

r
s =−53.0(7.2)MeV . (3.4)

In order to extract the magnetic susceptibilities in the MS scheme at µ = 2 GeV, we use a
recent lattice determination of 〈ψ̄lψl〉 = (269(2)MeV)3 [45] and 〈ψ̄sψs〉/〈ψ̄lψl〉 = 0.8(3) from
[46]. This yields

χu =−(2.08±0.08)GeV−2 , χd =−(2.02±0.09)GeV−2 , χs =−(3.4±1.4)GeV−2 .

(3.5)
These values are in good agreement with the QCD sum rule calculations summarized and

updated in [22], χud =−2.11(23)GeV−2. Quenched lattice simulations, on the other hand, gave the
unrenormalized values χud = −1.547(6)GeV−2 for two colors [32] and χud = −4.24(18)GeV−2

for three colors [9].
Finally, we show the corresponding temperature dependence of τr

u in Fig. 9. Since the diver-
gent term τdiv of Eq. (2.7) is independent of T , we subtracted it in the same way as at T = 0. Then

10
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Thermodynamic properties of QCD in external magnetic fields

Figure 9: Temperature dependence of the negative renormalized light tensor coefficient in the MS scheme
at a renormalization scale µ = 2 GeV for three lattice spacings and the continuum extrapolation.

we performed a combined fit of the form N−2
t for different lattice spacings. We found the light ten-

sor coefficient to decrease in the transition region like a quasi-order parameter. The corresponding
transition temperature, Tc = 162(3)(3) MeV, is similar to that of the chiral condensate.

4. Summary

We have presented results on equilibrium thermodynamics of QCD in external magnetic fields,
obtained through lattice simulations. We have found the well-known magnetic catalysis at zero
temperature to turn into the opposite – inverse magnetic catalysis – at temperatures around the
transition. We have argued that performing the continuum limit and using physical quark masses
are essential for obtaining these results. The inverse magnetic catalysis behavior still awaits confir-
mation from other first principle methods, for instance from lattice simulations with other fermion
discretizations. This also applies to the associated decrease of the transition temperatures with the
magnetic field, which could be of phenomenological relavance for, e.g., heavy-ion collisions. Both
phenomena seem to represent a challenge for effective theories of QCD.

As a second key aspect we have calculated one of the Lorentz symmetry breaking observables
induced by the magnetic field, the tensor polarization. It gives a diamagnetic contribution to the
spin-related part of the magnetic susceptibility of the QCD vacuum.
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