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1. Introduction

Understanding of the confinement and deconfinement natures of Quantum Chromodynamics

(QCD) is one of the long standing problems in the particle and nuclear physics. To investigate such

phenomena, non-perturbative aspects of QCD play an important role.

It was Polyakov [1] who first addressed the deconfinement phase transition successfully in

the strong-coupling limit of a pure Yang-Mills theory. The order parameter for deconfinement

phase transition was then identified, which is called the Polyakov loop. The strong-coupling ex-

pansion was extended to implement quarks and the chiral dynamics [2, 3]. One of the most popular

approaches to investigate the QCD phase diagram is the chiral effective model (such as the Nambu–

Jona-Lasinio model [4, 5, 6, 7, 8, 9, 10], the linear-sigma model [11, 12, 13, 14], etc. [15]) with

the Polyakov loop (P-chiral model).

The largest ambiguity in the P-chiral model is the choice of the effective potential of Polyakov

loop potential. The initial choice was motivated by the strong coupling expansion [4]. It is used

in the P-chiral model and parameters in the potential are fitted with the pure Yang-Mills thermo-

dynamics from the lattice simulation [4, 5, 6]. Since the fitting procedures do not refer to mi-

croscopic dynamics at all, it is unclear how the Polyakov loop potential is related or unrelated to

non-perturbative characteristics near Tc.

An important breakthrough came from an attempt to understand quark deconfinement in terms

of the Landau-gauge propagators that describe gluon confinement [16, 17]. In the Landau gauge,

the deep-infrared enhancement in the ghost propagator causes confinement, while the gluon propa-

gator is infrared suppressed. This behavior is qualitatively consistent with the confinement scenar-

ios by Kugo and Ojima [18] and also by Gribov and Zwanziger [19]. So far, the gluon and ghost

propagators in the Landau gauge fixing at zero and finite temperature have been studied in the

lattice simulations, the Dyson-Schwinger equation approach, and the functional renormalization

group approach [20, 21, 22].

In the talk, we report on an update of Ref. [17] using the state-of-the-art results from the finite-

temperature lattice simulation for the gluon and ghost propagators [22]; only the zero-temperature

propagators were used in Ref. [17]. We would stress that what we address in this talk is not only an

update but should aim to establish a bridge over the common model studies and the first-principle

functional approaches. Such a work must be extremely useful for both sides; there are many

arguments to suggest that the quark back reaction to the gluonic sector has crucial impacts on the

QCD phase-diagram research.

First, we present results obtained in Ref. [23]. In the paper, we discussed the deconfinement

transition and QCD thermodynamics with and without the dynamical quarks. Next, the quark back

reaction to the gluonic sector is presented. That part is based on Ref. [24].

2. Formalism

In the Landau gauge fixing, the inverse gluon propagator can be expressed as

D−1
A (p2) = [(DT

A)
−1T µν +(DL

A)
−1Lµν ], (2.1)
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where T µν and Lµν are the four-dimensional transverse and longitudinal projection tensors, respec-

tively. At finite T , Lorentz symmetry is explicitly broken and then DT
A can be further decomposed

into the three-dimensional longitudinal and transverse components. Then, three distinct gluon

propagators and ghost propagator are appeared; DL(p2), D
(T )
T (p2), D

(L)
T and DC.

To calculate the thermodynamic potential for the gluonic sector, we need the analytic form of

the propagators. In this study, we use the Gribov-Stingl from:

DL =
1

p2
, D

(T )
T =

ctdt(p2 +d−1
t )

(p2 + r2
t )

2
, D

(L)
T =

cldl(p2 +d−1
l )

(p2 + r2
l )

2
, DC =

p2 +d−1
g

(p2)2
. (2.2)

Parameters for the pure SU(3) Yan-Mills case at T = 0.86Tc are presented in Ref. [22];

ct = 5.5 GeV2, dt = 0.152 GeV−2, r2
t = 0.847GeV2,

cl = 3.7 GeV2, dl = 0.221 GeV−2, r2
l = 0.257GeV2. (2.3)

For the ghost propagator, we use d−1
g = 0.454 GeV2.

In the leading-order of two-particle irreducible formalism, the thermodynamic potential for

the gluonic sector can be expressed as

U =−
1

2
tr lnD−1

A + tr lnD−1
C , (2.4)

where tr acts on all of indices. The thermodynamic potential finally becomes

U =
(1

2
−2

)

Vpert +
1

2

(

V
(l)

A (d−1
l )−2V

(l)
A (r2

l )
)

+
2

2

(

V
(t)

A (d−1
t )−2V

(t)
A (r2

t )
)

−VC(d
−2
C ), (2.5)

where Vpert,V
(L)

A , V
(T )

A and VC are the perturbative one-loop [25, 26], three-dimensional longitu-

dinal gluon, three-dimensional transverse gluon and ghost parts, respectively. The explicit form of

VA and VC is

V (m2) =−T trc

∫

d p

2π2
ln
(

1−L8e−β
√

p2+m2
)

, (2.6)

where trc is the adjoint color trace and L8 is the Polyakov loop operator in the adjoint representation

(L8)ab = 2trc(taL3tbL3) with fundamental Polyakov loop operator L3. At zero chemical potential,

the fundamental Polyakov loop, Φ = trceiφ/3, can be simplified as Φ = [1+2cos(2πa)]/3 because

the temporal components of the gluon field φ can be expressed by using one angular parameter a;

φ = 2π ×diag(a,−a,0).

3. Numerical results

First, we show the results obtained in Ref. [23]. The parameter fitting result for the gluon

propagators is shown in left-panel of Fig. 3. The ghost dressing function is shown in right-panel

of Fig. 3. By minimizing the thermodynamic potential (2.5), we can calculate the Polyakov loop

expectation value. The result is shown in left-panel of Fig. 3. We find that the critical temperature

Tc in our approach is Tc = 287 MeV which is close to the lattice QCD prediction in the SU(3)

Yang-Mills theory [29, 30]. Thermodynamic quantities, the pressure, the internal energy density

3
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Figure 1: (Left) Three-dimensional transverse and longitudinal gluon propagators (D
(L)
T and D

(T )
T ) as a

function of the three-dimensional momentum. The symbols represent the lattice data at T = 0.86Tc from

Ref. [22]. The curves represent the fitting results. (Right) Ghost dressing function at T = 0.84Tc from

Ref. [22]. The curve is fitting result.
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Figure 2: (Left) Polyakov-loop expectation value calculated from the thermodynamic potential for the

SU(3) and SU(2) cases with same parameters. (Right) Thermodynamic quantities normalized by the Stefan-

Boltzmann limit for the SU(3) pure Yang-Mills theory. The solid, dotted and dashed lines (the circle, square

and triangle symbols) are our results (the lattice QCD data [27]) for the pressure, the internal energy density

and the entropy density, respectively.

and the entropy density, are shown in right-panel of Fig. 3. Our result looks consistent with the

lattice data neat Tc. The discrepancy above Tc can be understood that we neglect the temperature

dependence of the parameters in the propagators. It should be noted that thermodynamic quantities

naturally approach the Stefan-Boltzmann limit at high temperature limit.

Next, we show the dynamical quark effects. For the thermodynamic potential of the gluonic

sector, we use the pure Yan-Mills one. The quark back reaction to the gluonic sector is discussed in

later. The quark contribution of the thermodynamic potential with two-flavor quarks is introduced
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Figure 3: (Left) Polyakov loop expectation value and normalized chiral condensate as a functions of T .

(Right) Thermodynamic quantities normalized by the Stefan-Boltzmann limit with dynamical quarks. The

symbols represent the lattice-QCD results taken from Ref. [28].

by the Nambu–Jona-Lasinio (NJL) model as

Ωquark =−4

∫

Λ

d3 p

(2π)3

[

NcEp +T trc ln
(

1+L3e−βEp

)]

+
(M−m0)

2

2G
, (3.1)

where Ep =
√

p2 +M2. The parameter set of the NJL part is Λ = 631.5 MeV, GΛ2 = 2.2 and m0 =

5.5 MeV. In the left-panel of Fig. 3, we plot the Polyakov loop expectation value and normalized

chiral condensate by minimizing the total thermodynamic potential U +Ωquark where we chose

Tc = 178 MeV (by an arbitrary criterion that Φ takes one half there). Thermodynamic quantities,

the pressure, the internal energy density and the entropy density, are shown in the right-panel of

Fig. 3. Our numerical results are quantitatively agreed with the lattice QCD data near Tc. We

remark that our calculation is two flavors case and the lattice QCD simulation is done in the (2+1)

flavors case, but the difference is minor if the quantities are normalized by the Stefan-Boltzmann

limit.

Our approach has advantage if we consider the quark back reaction to the gluonic sector be-

cause the gluon propagators are explicitly used in the calculation of the thermodynamic potential.

The quark back reaction is quite important to understand the QCD phase diagram.

In Ref. [24], we discuss the quark back reaction effect by using the unquenched lattice QCD

data. For the lattice QCD simulation, we utilize gauge configurations generated by WHOT-QCD

Collaboration on N3
s ×Nt = 163 × 4 lattice with a renormalization-group improved gauge action

and a clover improved Wilson quark action with two flavor quarks. The simulations have been

performed along the line of constant physics at mPS/mV = 0.65 (ratio of the pseudo-scalar and

the vector meson masses at zero temperature). Our results for the gluon propagators are shown in

Fig. 4. Figure 4 shows temperature dependence of D
(T )
T and D

(L)
T as a function of three-dimensional

momentum where propagators are normalized by Tpc = 180 MeV. We find that there is significant

temperature dependence at infra-red region. On the other hand, the propagators converge at ultra-

violet region. When temperature increases, magnitude of both propagators increases at T < Tpc.
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Figure 4: Results of the three-dimensional transverse (left) and longitudinal (right) gluon propagators in

three-dimensional momentum space for several temperature. A physical scale is normalized by Tpc.

T/Tpc T ′
c [GeV]

0.82 0.332(20)(10)

0.86 0.291(26)(11)

0.94 0.233(19)(24)

Table 1: Results of T ′
c evaluated from thermodynamic potential of the gluonic sector at several T/Tpc. The

first (second) parenthesis indicates statistical (systematic) errors.

Moreover, we can see the enhancement at T ∼ Tpc for D
(L)
T and T ∼ 1.2Tpc for D

(T )
T . In the case

of pure Yan-Mills theory, the gluon propagators are almost insensitive to temperature below Tc,

whereas these monotonically decrease above Tc [22]. Therefore, the strong sensitivity to T below

Tpc in our calculation implies that there are a large number of configurations which can couple

to the gluon fields even at T < Tpc where the gluon confinement is slightly broken by the quark

back reaction effect. In the calculation of the thermodynamic potential, we also need the ghost

propagator. Here, we utilize results of DC obtained in Ref. [23] by fitting the lattice QCD data in

pure Yan-Mills theory [22] because the ghost propagator is not sensitive to the dynamical quarks

due to lack of the quark-ghost vertex [31].

The gluon propagators shown in Fig. 4 are also fitted by the Gribov-Stingl form in the case

of pure Yan-Mills theory. Then the critical temperature of the thermodynamic potential T ′
c can be

estimated. It should be noticed that T ′
c does not correspond to Tpc because it is obtained by the

purely gluonic sector. Qualitative shape of the thermodynamic potential (2.5) is the same with the

case of pure Yan-Mills theory [23]. Therefore, it exhibits the first order phase transition. Contribu-

tion of the quark back reaction appears as a shift of the characteristic scale which relates T ′
c in the

effective approach. Table 3 summarizes results of T ′
c in GeV unit for several T/Tpc. Parameters in

the Gribov-Stingl form and the explanation of the error estimation is shown in Ref. [24]. We can

see that T ′
c is sensitive to input T/Tpc and decreases with T increasing at T < Tpc. Since the number

of lattice configurations which couple to the gluon fields increases with increasing T below Tpc, the

6
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decrease of T ′
c is caused by the quark back reaction via the gluon propagators.

4. Summary

In this talk, we present the recent development on the investigation of the deconfinement tran-

sition and QCD thermodynamics via the gluon and ghost propagators. This work is the extension

of the idea of Ref. [17].

The gluon and ghost propagators at finite T in the Landau gauge measured in the lattice simu-

lation were fitted by the Gribov-Stingl form. We took the fitting parameters of propagators at finite

T from Ref. [22] and found an easy way to calculate the pressure, the internal energy density and

the entropy density as well as the order parameters as functions of T in the pure Yan-Mills theory

and the system with dynamical quarks. The dynamical quark effects were investigated by using the

NJL model. Our numerical results are quantitatively agreed with the lattice QCD data near Tc.

The quark back reaction effect was investigated in the same procedure in the case without the

quark back reaction by considering the unquenched lattice QCD data. We have calculated the gluon

propagators of the three-dimensional longitudinal and traverse sectors in lattice QCD simulations

with two-flavor dynamical quarks at finite temperature. The simulations have been performed by

utilizing gauge configurations generated by WHOT-QCD Collaboration on N3
s ×Nt = 163×4 lattice

with a renormalization-group improved gauge action and a clover improved Wilson quark action

with two flavor quarks The simulations have been performed along the line of constant physics at

mPS/mV = 0.65. We obtained that the magnitude of the gluon propagators increases at T < Tpc.

This can be regarded as contributions of the quark back reaction since the gluon propagators are

almost insensitive below the critical temperature in the pure Yan-Mills theory [22]. In order to

estimate effects of the quark back reaction to the gluonic sector, we fit the propagators by Gribov-

Stingl form and input these to the thermodynamic potential calculation. The critical temperature

estimated from the purely gluonic sector decreased with temperature of the gluon propagators

increasing at T < Tpc. This means that the enhancement of the quark back reaction reduces the

critical temperature of the gluonic sector.

References

[1] A. M. Polyakov, Phys. Lett. B 72, 477 (1978).

[2] E. -M. Ilgenfritz and J. Kripfganz, Z. Phys. C 29, 79 (1985).

[3] A. Gocksch and M. Ogilvie, Phys. Rev. D 31, 877 (1985).

[4] K. Fukushima, Phys. Lett. B 591, 277 (2004) [hep-ph/0310121].

[5] C. Ratti, M. A. Thaler and W. Weise, Phys. Rev. D 73, 014019 (2006) [hep-ph/0506234].

[6] S. Roessner, C. Ratti and W. Weise, Phys. Rev. D 75, 034007 (2007) [hep-ph/0609281].

[7] W. -j. Fu, Z. Zhang and Y. -x. Liu, Phys. Rev. D 77, 014006 (2008) [arXiv:0711.0154 [hep-ph]].

[8] M. Ciminale, R. Gatto, N. D. Ippolito, G. Nardulli and M. Ruggieri, Phys. Rev. D 77, 054023 (2008)

[arXiv:0711.3397 [hep-ph]].

[9] Y. Sakai, K. Kashiwa, H. Kouno and M. Yahiro, Phys. Rev. D 77, 051901 (2008) [arXiv:0801.0034

[hep-ph]].

7



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
2
1
6

Polyakov loop and QCD thermodynamics from the Landau gauge gluon and ghost propagators
Kouji Kashiwa

[10] K. Fukushima, Phys. Rev. D 77, 114028 (2008) [Erratum-ibid. D 78, 039902 (2008)]

[arXiv:0803.3318 [hep-ph]].

[11] B. -J. Schaefer, J. M. Pawlowski and J. Wambach, Phys. Rev. D 76, 074023 (2007) [arXiv:0704.3234

[hep-ph]].

[12] B. -J. Schaefer, M. Wagner and J. Wambach, Phys. Rev. D 81, 074013 (2010) [arXiv:0910.5628

[hep-ph]].

[13] T. K. Herbst, J. M. Pawlowski and B. -J. Schaefer, Phys. Lett. B 696, 58 (2011) [arXiv:1008.0081

[hep-ph]].

[14] B. J. Schaefer and M. Wagner, Phys. Rev. D 85, 034027 (2012) [arXiv:1111.6871 [hep-ph]].

[15] E. Megias, E. Ruiz Arriola and L. L. Salcedo, Phys. Rev. D 74, 114014 (2006) [hep-ph/0607338].

[16] J. M. Pawlowski, D. F. Litim, S. Nedelko and L. von Smekal, Phys. Rev. Lett. 93, 152002 (2004)

[hep-th/0312324].

[17] J. Braun, H. Gies and J. M. Pawlowski, Phys. Lett. B 684, 262 (2010) [arXiv:0708.2413 [hep-th]].

[18] T. Kugo, hep-th/9511033.

[19] D. Zwanziger, Nucl. Phys. B 412, 657 (1994).

[20] N. Vandersickel and D. Zwanziger, Phys. Rept. 520, 175 (2012) [arXiv:1202.1491 [hep-th]].

[21] C. S. Fischer, A. Maas and J. A. Muller, Eur. Phys. J. C 68, 165 (2010) [arXiv:1003.1960 [hep-ph]].

[22] R. Aouane, V. G. Bornyakov, E. M. Ilgenfritz, V. K. Mitrjushkin, M. Muller-Preussker and

A. Sternbeck, Phys. Rev. D 85, 034501 (2012) [arXiv:1108.1735 [hep-lat]].

[23] K. Fukushima and K. Kashiwa, arXiv:1206.0685 [hep-ph].

[24] K. Kashiwa and Y. Maezawa, arXiv:1212.2184 [hep-ph].

[25] D. J. Gross, R. D. Pisarski and L. G. Yaffe, Rev. Mod. Phys. 53, 43 (1981).

[26] N. Weiss, Phys. Rev. D 24, 475 (1981).

[27] S. Datta and S. Gupta, Phys. Rev. D 82, 114505 (2010) [arXiv:1006.0938 [hep-lat]].

[28] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti and K. K. Szabo, JHEP

1011, 077 (2010) [arXiv:1007.2580 [hep-lat]].

[29] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier and B. Petersson, Nucl.

Phys. B 469, 419 (1996) [hep-lat/9602007].

[30] O. Kaczmarek, F. Karsch, P. Petreczky and F. Zantow, Phys. Lett. B 543, 41 (2002) [hep-lat/0207002].

[31] E. -M. Ilgenfritz, M. Muller-Preussker, A. Sternbeck, A. Schiller and I. L. Bogolubsky, Braz. J. Phys.

37, 193 (2007) [hep-lat/0609043].

8


