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We summarise recent attempts to describe finite density QCD by means of an analytically derived
effective lattice theory formulated in terms of Polyakov loops. For sufficiently heavy quarks, the
underlying strong coupling and hopping expansions are fully controlled and allow for continuum
extrapolations of numerical results obtained in the effective theory. The sign problem of the latter
can be cured by flux representations or the application of complex Langevin methods. We present
the deconfinement transition and its critical endpoint as a function of pion masses and chemical
potential. Simulations in the cold and dense regime are also possible, demonstrating the sudden
transition to cold nuclear matter at zero temperature from QCD directly.
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1. Introduction

QCD at finite baryon density remains a challenge for lattice simulations because direct Monte
Carlo simulations are prohibited by the sign problem: the fermion determinant becomes complex
for non-vanishing quark chemical potential µ and cannot be interpreted as part of a probability
weight. Existing workarounds based on reweighting, Taylor expansions in µ/T or simulations at
imaginary chemical potential followed by analytic continuation all introduce additional approxi-
mations which are valid for µ <∼T only, see [1]. The QCD phase diagram remains largely unkown
and there are no QCD predictions for cold nuclear matter.

This motivates a new approach by analytically derived effective theories, which should sim-
plify the computational problem while maintaining control over the systematic errors. An example
is dimensional reduction at finite temperature [2], which relies on a sufficient scale separation
gT � πT between soft and hard modes in the thermal theory. The former then get integrated out
perturbatively to produce a 3d effective theory for the soft modes, which can be readily simulated
on the lattice. The approach is valid in the deconfined phase but fails to describe the deconfinement
transition, since the perturbative step explicitly breaks the centre symmetry of Yang-Mills theory
[3]. Alternative efforts write down the most general centre-symmetric 3d effective action for the
soft modes [4] and fix the couplings by perturbative or even non-perturbative matching calculations
[5]. However, for SU(3) this remains a difficult task due to the high number of matching coeffi-
cients. In this contribution we summarise a recent solution to this problem by means of strong
coupling expansions on the lattice. We describe how to derive a centre-symmetric 3d effective
theory for thermal Yang-Mills theory and simulate it on the lattice. After successful completion
of this step we include heavy quarks. The resulting theory still has a sign problem, but it can be
overcome by applying flux representations [6] or a complex Langevin algorithm [7]. We compute
the deconfinement transition as a function of quark mass and all chemical potentials. Finally, the
cold and dense regime is also feasible and we obtain a clear signal for the onset of nuclear matter.

2. Yang-Mills theory

Starting point is the (3+1)-dimensional Wilson lattice action at finite temperature T = (aNτ)−1,

Z =
∫

[dU0][dUi]exp

[
β

2N ∑
p

(TrUp +TrU†
p)

]
, β =

2N
g2 . (2.1)

Finite temperature and the bosonic nature of the degrees of freedom imply the use of periodic
boundary conditions in the time direction. Finer lattices correspond to larger Nτ for fixed physics.
We now integrate out the spatial links in a strong coupling expansion and get schematically

Z =
∫

[dU0]exp[−Seff] ; (2.2)

−Seff = ln
∫

[dUi]exp

[
β

2N ∑
p

(TrUp +TrU†
p)

]
≡ λ1S1 +λ2S2 + . . . (2.3)

We expand about β = 0 and arrange the effective couplings λn(β ,Nτ) in increasing order in β of
their leading terms. Thus the λn become less important the higher n. The interaction terms Sn
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Figure 1: Left: Expectation value of |L|. With increasing spatial volume, a first order transition builds up,
the infinite volume critical coupling is marked by a vertical line. Right: Critical line in the two-coupling
space with a next-to-nearest neighbour coupling. The picture is similar for the adjoint coupling [8].

depend only on Z(3)-invariant combinations of Polyakov loops

L j = Tr
Nτ

∏
τ=1

U0(x j,τ) . (2.4)

The simplest effective theory is the one with only nearest neighbour interaction terms, whose higher
powers can be summed up in closed form to yield [8]

Zeff =
∫

∏
i

dLieVi ∏
<i j>

(1+2λ1ReLiL∗j), Vi =
1
2

ln(27−18|Li|2 +8Re(L3
i )−|Li|4 . (2.5)

The corresponding coupling has been computed to high orders,

λ (u,Nτ ≥ 5) = uNτ exp
[

Nτ

(
4u4 +12u5−14u6−36u7 +

295
2

u8 +
1851
10

u9 +
1055797

5120
u10 + . . .

)]
.

(2.6)
Note that the next-to-nearest neighbour coupling starts only at λ2 ∼ u2Nτ+2 while the nearest neigh-
bour coupling of adjoint loops is λa ∼ u2Nτ .

The effective theory is simulated using a standard Metropolis algorithm. Based on the global
Z(3) symmetry, one expects spontaneous symmetry breaking for some critical value of the coupling
λ1,c. In Fig. 1 (left) this is signalled by a rise in the Polyakov loop, which on increasing volumes
turns into a discontinuous jump corresponding to a first order phase transition. A finite volume
scaling analysis indeed provides the correct scaling exponents for a first order transition, and the
extrapolation to the thermodynamical limit yield the critical coupling λ1c = 0.187885(30).

The influence of the subleading couplings is small as shown in Fig. 1 (right). In a two-coupling
theory, there is a critical line separating the ordered and disordered phases. However, not every
point on the phase boundary corresponds to a representative of the 4d Yang-Mills theory. These are
obtained by the intersections with the lines of fixed Nτ . Since the continuum limit corresponds to
Nτ →∞, the second coupling quickly becomes negligible as the continuum is approached. We will
therefore restrict ourselves to the one-coupling theory for the remainder, for a detailed comparison
see [8].
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Figure 2: Left: Critical coupling for the SU(3) Yang Mills transition, calculated from λ1,c using the maps
Eq. (2.6). Right: Critical temperature corresponding to those couplings and continuum extrapolation. Error
bars are systematic and denote the difference between the last two orders in the series Eq. (2.6).

With the critical coupling λ1c at hand, the map Eq. (2.6) can be inverted to compute the critical
coupling βc of the 4d Yang-Mills theory for any given Nτ . The result is shown in Fig. 2 (left) for the
three highest available truncations of the strong coupling series. The onset of good convergence
behaviour is seen. Note that the values for all Nτ are encoded in the map Eq. (2.6) and stem
from a single 3d simulation! In [8] a detailed comparison of the values of βc with those from
4d simulations was made. In the range Nτ = 2− 16 the relative error for the predictions of the
effective theory was found to be less than 10%. This suggests that a continuum extrapolation may
be performed also in the effective theory. Indeed, supplying the Sommer scale r0 and using the
non-perturbative beta-function from [9], the βc can be converted to critical temperatures and the
onset of scaling with leading order additive lattice corrections∼ a2 ∼ N−2

τ is clearly observed. The
continuum extrapolated result Tc = 250(14) MeV is within less than 10% of the full answer from
4d simulations.

3. QCD with very heavy quarks

Let us now summarise the inclusion of heavy fermions [10], which are analytically integrated
using the hopping parameter expansion. The quark part of the action for N f mass-degenerate
flavours with masses M is then written as a power series in the hopping parameter κ ,

−Sq =−N f

∞

∑
l=1

κ l

l
TrH[U ]l, κ =

1
2aM +8

, H[U ]y,x = ∑
±ν

δy,x+ν̂(1+ γν), γ−ν =−γν . (3.1)

Thus each hop to a neighbouring lattice site gives a power of the hopping parameter κ . The quark
chemical potential µ is introduced as usual by a factor eaµ(e−aµ) multiplying link variables in
positive (negative) time direction. The effective theory is obtained from the full theory in the same
way as for Yang-Mills,

Z =
∫

[dU0][dUi]exp[−Sg−Sq] =
∫

[dU0]exp[−Seff] , −Seff = ln
∫

[dUi]exp[−Sg−Sq] . (3.2)

We now have a double expansion in u(β ) and κ , i.e. all effective couplings depend on both param-
eters and Nτ . Furthermore, quarks of finite mass lead to terms in the action which explicitly break
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Figure 3: Left: Order of the QCD phase transition as a function of quark masses at µ = 0 (schematic).
Right: Calculated phase boundary with critical endpoint.

the Z(3) symmetry present in the pure gauge case. We may arrange this as

−Seff =
∞

∑
i=1

λi(u,κ,Nτ)Ss
i −2N f

∞

∑
i=1

[
hi(u,κ,µ,Nτ)Sa

i + h̄i(u,κ,µ,Nτ)S
a,†
i

]
. (3.3)

The λi are defined as the effective couplings of the Z(3)-symmetric terms Ss
i , whereas the hi multi-

ply the asymmetric terms Sa
i . The hi and h̄i are related via h̄i(u,κ,µ,Nτ) = hi(u,κ,−µ,Nτ).

Keeping the leading fermionic coupling h1 only and summing up all fermion loops winding
multiple times around the torus produces a determinantal expression in the effective theory,

Zeff =
∫ (

∏
i

dLi eViQN f
i (h1, h̄1)

)
∏
<i j>

(1+2λ1ReLiL∗j) . (3.4)

with
Qi(h1, h̄1) =

[
(1+h1Li +h2

1L∗i +h3
2)(1+ h̄1L∗i + h̄2

1Li + h̄3
1)
]2

, (3.5)

As a first application we investigate the deconfinement transition of QCD with heavy quarks
as a function of quark mass and chemical potential. We begin by considering the case of zero
baryon density, shown schematically in Fig. 3 (left). In the pure gauge limit in the upper right
corner, the deconfinement transition is of first order. Dynamical quarks at any fixed N f break
the global Z(3) symmetry of the QCD action explicitly. As a consequence, the phase transition
weakens with decreasing quark masses until it vanishes at a critical point. For still lighter quarks
the deconfinement transition is an analytic crossover. This behaviour is inherited by the effective
theory. For a given N f and µ = 0, we have h = h̄ and the effective theory has two couplings,
(λ1,h1). The first-order phase transition of the one-coupling theory extends to a first-order line
with a weakening transition as h1increases. Eventually the transition vanishes at a critical point.

The resulting phase boundary between the ordered and disordered phase is shown in Fig. 3
(right) and found to be linear in the small coupling h1. In order to locate the critical endpoint we
study the scaling of the fourth order Binder cumulant along the phase boundary and find λ1c =
0.18672(7),h1c = 0.000731(40). The location of the critical endpoint is marked in Fig. 3 (right).
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N f Mc/T κc(Nτ = 4) κc(4), Ref. [11]
1 7.22(5) 0.0822(11) 0.0783(4)
2 7.91(5) 0.0691( 9) 0.0685(3)
3 8.32(5) 0.0625( 9) 0.0595(3)

Table 1: Location of the critical point for µ = 0 and Nτ = 4. The first two columns report our results, the
last compares with existing literature.
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Figure 4: Left: The deconfinement critical surface with heavy quarks. Right: Phase diagram for N f = 2
calculated on Nτ = 6 lattices. Above the surface the theory is deconfined. The line of critical end points
(dahsed) separates the crossover (light) from the first order transitions (dark).

As in the case of pure gauge theory, this can be mapped back analytically to predict κc(Nτ) for the
4d lattice theory, which can then be compared to full 4d simulations. For Nτ = 4 the results are
specified in Table 1, with an accuracy of 5% or better.

With this test passed also for the effective theory with dynamical fermions, it is now easy to
switch on chemical potential. In this case h̄1 6= h1 and the sign problem enters. However, the sign
problem is comparatively mild. Moreover, the effective theory to order κ2 lends itself to a refor-
mulation in terms of a flux representation as in [6], which is free of the sign problem and can be
simulated by a worm algorithm. This allows for a complete determination of the deconfinement
transition as a function of quark or pion mass and chemical potential as shown in Fig. 4. The left
plot shows the heavy quark (upper right) corner of Fig. 3 (left) extended to real and imaginary
chemical potential. The deconfinement critical surface has been computed for all chemical poten-
tials, shown is the result for Nτ = 6 lattices. Note that the µ-dependence of the surface follows the
tricritical scaling dictated by the tricritical line at imaginary chemical potential as predicted in [12].

It is now exciting to also apply this effective theory to cold and dense conditions [13]. First,
consider the static and strong coupling limits, as in this case the partition function factorises into
one-site integrals that can be solved analytically. In the zero temperature limit,

Z(β = 0,κ = 0) T→0−→
[
1+4CNc +C2Nc

]N3
s . (3.6)

The quark number density is now easily evaluated

n =
T
V

∂

∂ µ
lnZ =

1
a3

4NcCNc +2NcC2Nc

1+4CNc +C2Nc
, lim

T→0
a3n =

{
0, µ < m

2Nc, µ > m
, (3.7)

and at zero temperature exhibits a discontinuity when the quark chemical potential equals the mass.
Note that this reflects the silver blaze property of QCD, i.e. the fact that the baryon number stays

6
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Figure 5: Left: Baryon density, Polyakov loop and conjugate Polyakov loop obtained from Monte Carlo
(Ns = 3), complex Langevin (Ns = 6) and the static strong coupling limit, respectively. Right: Baryon density
extrapolated to the continuum. In the zero temperature limit a jump to nuclear matter builds up.

zero for small µ even though the partition function explicitly depends on it. Once the baryon
chemical potential is large enough to make a baryon (mB = 3M in the static strong coupling limit),
a transition to the lattice saturation density happens. Note that saturation density here is 2Nc quarks
per flavour and lattice site and reflects the Pauli priniciple once the lattice is full.

Next, we switch on the gauge coupling as well as the fermionic couplings h1,h2 through
order κ2, where the latter also includes LiL j terms and hence quark-quark-interaction (for ex-
plicit expressions, see [13]). To keep our truncated series in full control, we choose β = 5.7,κ =
0.0000887,Nτ = 116 corresponding to mM = 20 GeV, T = 10 MeV, a = 0.17 fm. The effective
action has a sign problem and the h2 term spoils the flux representation used earlier. However, the
theory falls into the class of models successfully tested for complex Langevin [14]. Indeed, the cor-
responding simulation results in Fig. 5 (left) are in complete agreement with those of a Metropolis
algorithm, which on small lattices can still be applied up to the onset transition. The silver blaze
property as well as lattice saturation are observed also in the interacting case, but the step function
is now smoothed. Note that the Polyakov loop as well as its conjugate get screened in the presence
of a baryonic medium, and hence rise. The ensuing decrease is due to saturation which forces all
Z(3) states to be occupied.

The effective theory being cheap to simulate, we have used up to nine different lattice spacings
for all values of chemical potentials, allowing for a continuum extrapolation of the dimensionless
ratio nB/m3

B, which has leading order O(a) corrections on account of the Wilson fermions. The
resulting continuum limit is displayed in Fig. 5 (right) for different temperatures. Again we observe
the build-up of a step function as the temperature approaches zero. It is amusing to note that the
baryon density at onset, when expressed in units of the baryon mass, is quite similar to the physical
nuclear density ≈ 0.16 fm−3 ≈ 0.15 ·10−2m3

proton.

4. Conclusions

We have proposed and tested a treatment of finite density QCD in two steps: an analytic
derivation of an effective theory by strong coupling methods, followed by numerical simulations.
In the pure gauge sector the effective theory reproduces the correct order of the deconfinement
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transition as well as the critical couplings to better than 10% for SU(2),SU(3). When heavy but
dynamical quarks are included, the sign problem of the effective theory is mild and can be treated
by flux representations or complex Langevin algorithm. The deconfinement transition including its
endpoint at finite density has been computed for all chemical potentials. Moreover, the silver blaze
property ad the onset of nuclear matter have been seen for the first time directly from QCD.
Acknowledgements: Project supported by the German BMBF, 06MS9150, and by the Helmholtz
International Center for FAIR within the LOEWE program launched by the State of Hesse.
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