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1. Introduction

The electric dipole moment (EDM) of neutron is one of the physical quantities that are quite
sensitive to the CP violation in the flavor-conserving interaction. Since there has been no ex-
perimental evidence for its existence so far, a severe constraint is imposed on the CP-violating
interactions. The currently most stringent limit for the neutron EDM is given by the Institut Laue-
Langevin (ILL) experiment [1]: |dn| < 2.9× 10−26 e cm (90% C.L.). Moreover, several experi-
mental projects which use ultra cold neutrons are now under development and expected to have
much improved sensitivities. Such high sensitivities provide an opportunity to probe the flavor-
conserving CP-violating interactions in the TeV-scale physics beyond the SM. Furthermore, we
may probe the flavor violation in the new physic indirectly. Even if the new flavor-violating inter-
actions are introduced in the new physics, the relative CP phase between them and the CKM matrix
may contribute to the EDM [2].

In order to translate the experimental limits for the neutron EDM into constraints on the CP
violation on the Lagrangian at parton level, one needs to obtain a relation between these two quan-
tities. There are some attempts to derive the relation based on the naive dimensional analysis,
the chiral perturbation theory, and the QCD sum rules, though they are considered to have large
uncertainties. It is ultimately desired that the lattice QCD simulation would evaluate it in future.

In this contribution, we show the evaluation of the neutron EDM with the QCD sum rules,
including the CP-violating operators up to the dimension five, which is derived in Ref. [3]. Similar
attempts have been already made in the previous works, e.g., in a series of papers by M. Pospelov
and A. Ritz [4, 5] and references therein. We also derive the sum rules for the neutron EDM, while
we use the lattice QCD simulation result for the low-energy constant in the numerical evaluation
of the neutron EDM. It is found that this gives more conservative estimate than carrying out all
of the evaluation within the framework of the QCD sum rules. This approach provides a way of
eliminating theoretical errors from the calculation, while there still remains uncertainty resulting
from the QCD sum rule technique itself.

This article is organized as follows. In Sec. 2, we review the CP-violating interactions at parton
level up to the dimension five. From Sec. 3, the analysis of the neutron EDM with the QCD sum
rules starts. In Sec. 3 we discuss phenomenological aspects of the correlator of the interpolating
field to neutron, and, in Sec. 4, show the properties of the neutron-interpolating field. In Sec. 5 we
extract the low-energy constant from the lattice QCD simulation result. In Sec. 6 our numerical
results for the neutron EDM are derived. Section 7 is devoted to conclusion. Since the pages for
this contribution are limited, we do not write evaluation of the operator product expansion (OPE)
for the correlator on the CP-violating and electromagnetic background. See Ref. [3] if you would
like to know it.

2. Effective Lagrangian

Let us first express the flavor-conserving CP-violating terms in the low-energy effective La-
grangian for the system consisting of light quarks and gluon. We include all of the CP-violating
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operators up to the dimension five:

L /CP = − ∑
q=u,d,s

mqq̄iθqγ5q+θG
αs

8π
GA

µνG̃Aµν

− i
2 ∑

q=u,d,s
dqq̄(F ·σ)γ5q− i

2 ∑
q=u,d,s

d̃qq̄gs(G ·σ)γ5q . (2.1)

Here, mq represents the quark masses, Fµν and GA
µν are the electromagnetic and gluon field strength

tensors, gs is the strong coupling constant. The second, third and forth terms in Eq. (2.1) are called
the effective QCD θ term, the electric and chromoelectric dipole moments (CEDMs) for quarks,
respectively. The EDMs and CEDMs for quarks are dimension-five operators, and they are sensitive
to the TeV-scale physics beyond the SM. They are evaluated by integrating out the heavy particles
and evaluating the renormalization-group equation effects to the coefficients1. The coefficients of
the CP-violating operators, θq, θG, dq, and d̃q, are all assumed to be quite small, and we keep only
the terms up to the first order of these parameters. The first two terms in Eq. (2.1) are mutually
related by the chiral rotation. Under the following infinitesimal chiral rotation,

q → q′ = (1− iερqγ5)q , (2.2)

where ρq = θq/θQ (θQ ≡ ∑q=u,d,s θq), θ̄ = θG +θQ is invariant so that it is a physical parameter.
There remains still some arbitrariness in the quark mass phases θq, since they are redefined

into another through an SU(3) chiral rotation. In this article, we choose an appropriate set of θq

so that the choice significantly reduces the CP-violating contribution to the vacuum expectation
values (VEVs) of quark bi-linear. We take the condition in Ref. [7] to determine θq, that is, after
the θ term rotated into the γ5-mass term, 〈Ω /CP|L /CP|MA〉 = 0 (MA = π, K, η) should be satisfied.
This condition is evaluated by using the partially conserved axial-vector current (PCAC) relations.
With the relation ∑q ρq = 1, we then determine the quark mass phases as follows:

ρq =
m∗
mq

[
1+

m2
0

2θ̄

{
d̃q− d̃q′

mq′
+

d̃q− d̃q′′

mq′′

}]
, (2.3)

where 1/m∗ ≡ 1/mu +1/md +1/ms and 〈q̄gs(G ·σ)q〉=−m2
0〈q̄q〉.

3. Phenomenological behavior of correlator

The QCD sum rules are based on an analysis of the correlator of interpolating fields. In the
method, OPE allows one to consistently separate the long- and short-distance contributions to the
correlator, and the long-distance contributions are evaluated by condensations of quarks and gluon.
By comparing the evaluated correlator with the phenomenological model, the properties for the
low-lying parts of the hadronic spectrum are derived. The Borel transformation is applied to the
correlator there. In this section, we first discuss the phenomenological model for the correlator.

In the present case, the interpolating field must have the same quantum numbers as those of
neutron, and it is denoted by ηn(x) hereafter. On a background with CP-violating sources, the

1The renormalization-group equations of the Wilson coefficients for the CP-violating interaction up to dimension
six at one-loop level is completed recently [6].
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matrix element of the interpolating field between the vacuum |Ω /CP〉 and the one-particle neutron
state on the CP-violating background |N /CP(p,s)〉 is given as

〈Ω /CP|ηn(x)|N /CP(p,s)〉= λne
i
2 αnγ5 un(p,s) e−ip·x . (3.1)

with un(p,s) an ordinary spinor wave function which satisfies ( /p−mn)un(p,s) = 0. The phase
factor e−iαnγ5 appears due to the γ5 mass term for neutron. The low-energy constant λn is to be
determined later.

Now we analyze the correlator of the interpolating fields from the phenomenological view-
point. It is defined as

Π(q)≡ i
∫

d4x eiq·x 〈Ω /CP|T{ηn(x)η̄n(0)}|Ω /CP〉F , (3.2)

where the subscript F implies that the correlator is evaluated on an electromagnetic field back-
ground. Our goal is to extract the EDM of neutron from the correlator. The phase factor in Eq. (3.1),
however, causes mixture between electric and magnetic dipole moment structures and makes it dif-
ficult to pick out only the EDM from the QCD sum rules. So we first examine the Lorentz structures
of the correlator and select a term independent of the phase αn, i.e., chiral invariant. As discussed
in Ref. [4], up to the leading order on the background electromagnetic field, the correlator Π(q) is
estimated by inserting an effective vertex such as Ln = −(i/2)dnN̄(F ·σ)γ5N. Here, N(≡ N(x))
denotes the renormalized neutron field which is approximately equivalent to λ−1

n e−iαnγ5/2ηn(x),
and dn is the EDM of neutron. A similar procedure to those in Ref. [4] shows that terms with
an odd number of Dirac matrices are independent of the phase factor αn, and furthermore, those
proportional to {F̃ ·σ , /q} are the unique choice in this case. Therefore we only focus on such terms
in the following calculation. Then, the phenomenological expression of the correlator is found to
be.

Π
(phen)(q) =

1
2

f (q2){F̃ ·σ , /q}+ . . . , (3.3)

where dots indicate terms with other Lorentz structures and

f (q2) =
(

λ 2
n dnmn

(q2−m2
n)2 +

A(q2)
q2−m2

n
+B(q2)

)
(3.4)

with A(q2) and B(q2) functions which have no pole at q2 = m2
n. As noted in Ref. [4], since we

are effectively dealing with a three-point function, it might be inconsistent to parametrize the con-
tinuum contribution in terms of a usual ansatz for the spectral function with a certain threshold in
the QCD sum rules. We just neglect the contribution with expecting its significance to be small
enough. Furthermore, we assume that the function A(q2) has little dependence on q2, and regard it
as a constant when we conduct the Borel transformation.

4. Neutron-interpolating field

In this section we give discussion on choice of the neutron-interpolating field which we use
for the QCD sum rule calculation. The field must have the same quantum numbers as neutron. The
most general interpolator for neutron on the ordinary CP-even background is parametrized as

ηn(x) = j1(x)+β j2(x) , (4.1)
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where j1(x) = 2εabc
(
dT

a (x)Cγ5ub(x)
)

dc(x) and j2(x) = 2εabc
(
dT

a (x)Cub(x)
)

γ5dc(x). Here the sub-
scripts, a,b,c, denote the color indices and C is the charge conjugation matrix. The interpolator
j1(x) is often used in lattice simulations.

When the calculation is carried out on the CP-violating background, however, the interpo-
lating fields include additional components. This point is easily understood when one considers
the chiral rotation discussed in Sec. 2. As we have seen in Sec. 2, the chiral rotation (2.2) trans-
forms the Lagrangian L into another. The same transformation, in turn, changes the interpola-
tors j1(x) and j2(x) as j1(x) → j1(x)− iε[(ρu + ρd)i1(x)+ ρd i2(x)] and j2(x) → j2(x)− iε[(ρu +
ρd)i2(x)+ρd i1(x)], respectively, where i1(x) = γ5 j2(x) and i2(x) = γ5 j1(x). After all, the neutron-
interpolating field which we deal with has a following structure:

ηn(x) = j1(x)+β j2(x)+ iε[i1(x)+β i2(x)] . (4.2)

The small constant ε is determined by the condition that the interpolating field ηn(x) has a
vanishing correlator with the current ξn(x)(≡ i1(x)+β i2(x)+ iε[ j1(x)+β j2(x)]). In what follows,
however, we sweep away the contribution of the mixture terms in the interpolating field by choos-
ing an appropriate value for the parameter β . As discussed in Sec. 3, we focus on parts of the
correlators which have the Lorentz structures with an odd number of gamma matrices. Such terms
anti-commute with γ5. Thus, in this case, the above expression leads to

〈Ω /CP|T{ηn(x)η̄n(0)}|Ω /CP〉F |γ odd = 〈 j1, j̄1〉+β [〈 j1, j̄2〉+ 〈 j2, j̄1〉]+β
2〈 j2, j̄2〉

+iε(1−β
2)[〈 j1, j̄2〉−〈 j2, j̄1〉]γ5 , (4.3)

where
〈a, b̄〉 ≡ 〈Ω /CP|T{a(x)b̄(0)}|Ω /CP〉F . (4.4)

This equation shows that the mixing terms in the interpolating field do not affect the correlator if
one sets β to be ±1. β = +1 is an appropriate choice since this choice eliminates the sub-leading
terms with infrared logarithm in OPEs, which yield ambiguity due to the infrared cutoff. With this
choice one may simultaneously exclude the contribution of the mixing terms. Thus, we will not
calculate such mixing contributions with keeping in mind that we will finally take β = +1 when
we derive the QCD sum rules.

5. Determination of λn from lattice

The low-energy constant λn determines the normalization of the QCD sum rules so that the
uncertainties are directly linked to the final result. We extract its numerical value from the lattice
QCD calculation presented in Ref. [8], in which the QCD matrix elements for the proton decay
rate are evaluated. In fact, they evaluate a similar quantity for proton, though the isospin symmetry
allows us to interpret it for the present purpose. After translating the above value of λn in Ref. [8]
into that of at the renormalization scale µ = 1 GeV, we obtain

λn =−0.0436±0.0047(stat)±0.0084(syst) GeV3 , (5.1)

for β = +1.
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Let us compare the value of λn obtained here with those used in the previous works. In Ref. [4],
for example, they exploit the values for λn evaluated in Ref. [9] by using the QCD sum rules. Two
Dirac-γ structures, 1l and /p, provide different sum rules. As evaluated in Ref. [9], these two sum
rules yield relatively small values for λn; the lattice QCD value is several times larger than the
values evaluated by using the QCD sum rules. The author in Ref. [9] also estimates the error for
these values. It is about 30 % for the sum rules result, while 20 % for the lattice QCD result.
The lattice QCD result might have a uncertainty in the chiral extrapolation. Since there is no
more guiding principle for judging which estimation is valid, we exploit the lattice QCD result in
Eq. (5.1) because this choice leads to rather conservative constraint for CP-violating sources.

6. Results

In order to derive the QCD sum rules for the present case, we first extract the coefficient func-
tions of {F̃ ·σ , /q} from both the phenomenological and the OPE correlators, Π(phen) and Π(OPE).
The phenomenological side is derived from Eq. (3.4) as

C(phen)(Q2) ≡ 1
2

[
λ 2

n dnmn
(Q2+m2

n)2 − A
Q2+m2

n

]
, (6.1)

while the OPE side at the next-to-leading order is given in Ref. [3] as

C(OPE)(Q2) ≡ 1
16π2 〈q̄q〉Θ log

(
Q2

Λ2

)
, (6.2)

with Q2 ≡−q2 and

Θ ≡ (4edmdρd − eumuρu)χθ̄ +(4dd −du)+(κ − 1
2

ξ )(4ed d̃d − eud̃u) . (6.3)

In Eq. (6.1), we neglect the continuum contribution and think of A as a constant, as discussed above.
By equating the coefficient functions after the Borel transformation, we finally derive the sum rules
as follows:

λ
2
n dnmn−AM2 =−Θ〈q̄q〉 M4

8π2 e
m2

n
M2 , (6.4)

with M so-called the Borel mass. All we have to do is now reduced to determining the Borel mass
M and the coupling λn, as well as estimating the parameter A.

Now we estimate the neutron EDM by using the results obtained above. First of all, we rewrite
the sum rules in Eq. (6.4) in a simple form:

c0 + c1x = f (x) , (6.5)

where x = M2 and

f (x)≡ x2

8π2 exp
(m2

n

x

)
, c0 ≡

dnλ 2
n mn

−Θ〈q̄q〉
, c1 ≡

−A
−Θ〈q̄q〉

. (6.6)

The right-hand side of Eq. (6.5) describes the behavior of the coefficient function obtained from
the OPE calculation, while the left-hand side represents the phenomenological one. The first and
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second terms in the left-hand side correspond to the double and single pole contributions, i.e., the
first and second terms in Eq. (3.4), respectively. Once given a Borel mass point x = M2, one may
readily pick out c0 and c1 from the tangent line to the function f (x) at the point. We here assume our
sum rules to be valid within the region of the Borel mass in which the single pole contribution is less
than 30 % of the double pole contribution. This assumption leads to 0.36 GeV2 < M2 < 0.50 GeV2,
and in this region, dn takes dn = 2.4 +0.6

−0.3×10−1 Θ, where the lower value corresponds to the upper
limit of the Borel mass, and vice versa. Here we take 〈q̄q〉 ' −(0.280 GeV)3 .

Next, we discuss the uncertainty of the OPE calculation. In this case, the truncation of the OPE
leads to the uncertainty. Let us estimate it by evaluating the relative size of the higher-order con-
tributions. Among them, the four-quark condensates such as 〈q̄qq̄q〉 are expected to yield sizable
contributions, since they are free from loop suppression. On the assumption that these contribu-
tions vanish when one takes the quark masses to be zero, we expect that they are suppressed at least
a factor of 〈q̄q〉 2

3 /M2 ' 0.1. Therefore, the uncertainty of the OPE calculation is estimated to be
O(10) %.

Taking the above discussion into account, we finally evaluate the neutron EDM with theoretical
uncertainty as follows:

dn = 2.4 +0.6
−0.3±0.1 +0.7

−0.4×10−1
Θ , (6.7)

where the first uncertainty stems from the phenomenological calculation while the second one
comes from the approximation in the OPE. We also include uncertainties originate from those in
λn (See Eq. (5.1).), which is indicated by the third error in the above equation. After all, it is found
that there is almost O(1) factor of uncertainty in our sum rule calculation.

For one’s convenience, we substitute the numerical values for the QCD parameters in Eq. (6.7).
Here we take m2

0 = 0.8 GeV2 , χ = −5.7± 0.6 GeV−2, ξ = −0.74± 0.2, and κ = −0.34± 0.1
[10, 11]. Then, with those parameters the center values, we find

dn = 8.2×10−17
θ̄ [e cm]−0.23du +0.95dd + e(−0.37d̃u +0.37d̃d −0.02d̃s) . (6.8)

The contributions from θ̄ and the quark CEDMs to dn may be changed furthermore by about±10%,
mainly due to the theoretical uncertainty of χ .

It is known that O(1) θ̄ induces too large neutron EDM, the strong CP problem. The Peccei-
Quinn (PQ) symmetry is one of the solutions for the strong CP problem. If the PQ symmetry is
introduced, θ̄ vanishes dynamically. However, if the quark CEDMs are non-vanishing, the θ term
is induced as θ̄ind = m2

0
2 ∑q=u,d,s d̃q/mq, since the axion field have its tadpole term [12]. Taking the

induced θ term into account, Θ is replaced with ΘPQ in Eq. 6.2,

Θ
PQ = 4dd −du +

(
m2

0
2

χ +κ − 1
2

ξ

)
(4ed d̃d − eud̃u) . (6.9)

The contributions from the strange quark CEDM are cancelled in the presence of the PQ symmetry
[5]2. Again, we substitute the numerical values for the QCD parameters as presented in the previous
section. The result is

dPQ
n =−0.24du +0.95dd + e(0.36d̃u +0.71d̃d) . (6.10)

2However, there is still possibility that the strange CEDM contribution to the neutron EDM may be sizable. See
Ref. [13].
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7. Conclusion

We have studied the neutron EDM induced by the CP-violating interactions up to the dimension-
five operators. In order to derive the relation between the CP-violating interactions and the neutron
EDM, we have used the QCD sum rule technique. There are several phenomenological parameters
to estimate the relation numerically. Pospelov and Ritz also analysed the neutron EDM using the
QCD sum rules [4, 5] and they determined the low-energy constant λn within the framework in the
QCD sum rules. On the other hand, we have extracted the λn parameter from lattice calculations.
This approach allows us to reduce a theoretical uncertainty and leads to a conservative constraint
on the CP violations. Our result is about 70 % smaller compared with the one obtained by Pospelov
and Ritz. There still remains a sizable uncertainty resulting from the QCD sum rules itself due to
a choice of the Borel mass scale. We have estimated the uncertainty from the Borel mass scale
assuming that the single pole contribution is less than 30 % of the double pole contributions. This
assumption leads to the theoretical error of about O(1).
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