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1. Dalitz plots and final-state interactions

A precise study of final-state interactions is increasingly becoming of high importance for
our understanding of diverse aspects of hadronic particle decays. They can be of significance for
various reasons: if final-state interactions are strong, they can significantly enhance decay probabil-
ities; they can significantlyshapethe decay probabilities, most prominently through the occurrence
of resonances; besides resonances, also new and non-trivial analytic structures can occur, such as
threshold or cusp effects [1]; and finally, they introduce strong phases or imaginary parts, the exis-
tence of which is e.g. a prerequisite for the extraction of CP-violating phases in weak decays. While
strictly model-independent methods have been suggested to investigate CP violation in Dalitz plot
analyses [2], requiring no hadron-physics input at all, it is obvious that the use of powerful methods
such as analyticity, unitarity, and low-energy constraints from chiral symmetry will lead to a much
more refined picture, and is probably the only way to investigate and identify the sources of new
physics in precision studies, once it is found.

2. Scattering and form factors

Analyticity, unitarity, and crossing symmetry provide a high degree of constraint for the pion–
pion scattering amplitude. They can be exploited using dispersion relations, which can be formu-
lated as a coupled system of partial-wave equations, the so-called Roy equations [3]. Modern preci-
sion analyses of the Roy equations have been performed [4], partly making use of constraints from
chiral perturbation theory on the scattering lengths appearing as subtraction constants therein [5],
and a similarly rigorous study exists also for pion–kaon scattering [6]. These provide us with high-
precision parametrizations of the most relevant scattering amplitudes for light mesons appearing in
the final states of heavy-meson decays.

Final-state interactions betweenonly twostrongly interacting particles as asymptotic states can
be described in terms of form factors, which in turn can be linked to the properties of scattering
amplitudes using analyticity and unitarity. As illustrated in Fig. 1, the unitarity relationfor a form
factorF I

J (s) (here: of the pion) of isospinI and angular momentumJ reads

discF I
J (s) = 2i ImF I

J (s) = 2iF I
J (s)×θ

(

s−4M2
π
)

×sinδ I
J(s)e

−iδ I
J(s) , (2.1)

from which one immediately deduces Watson’s final-state theorem [7]: the form factor shares the
phaseδ I

J(s) of the (elastic) scattering amplitude. The solution to Eq. (2.1) is obtained in terms of

=disc

Figure 1: Graphical representation of the discontinuity relation for pion form factors. The black disc denotes
the form factor, while the gray disc denotes the pion–pion scatteringT-matrix, projected onto the appropriate
partial wave.
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the Omnès functionΩI
J(s) [8],

F I
J (s) = PI

J(s)Ω
I
J(s) , ΩI

J(s) = exp

{

s
π

∫ ∞

4M2
π

ds′
δ I

J(s
′)

s′(s′−s)

}

, (2.2)

wherePI
J(s) is a polynomial. For the pion vector form factor, i.e.,J = 1, I = 1, we assume a

decrease of its modulus according to 1/s for larges, as suggested by perturbative QCD, and that
the phaseδ 1

1 (s) approachesπ in the same limit, which leads to a fall-off ofΩ1
1(s)∼ 1/s, such that

the polynomial is required to be a constant. Gauge invariance finally requires the normalization to
equal unity, such thatP1

1 (s) ≡ 1. The representation (2.2) then holds to very good accuracy in the
kinematic region whereelasticunitarity is a reasonable approximation, which for the pion–pion
P-wave is phenomenologically found to be reliable up to about 1 GeV.

The description of the pion’sscalar form factor(s),J = 0, I = 0, is slightly complicated by
the strong impact of inelasticities generated byKK̄ intermediate states right from the threshold
s= 4M2

K , which is enhanced due to the presence of thef0(980) resonance. The analogy to Eq. (2.1)
is formulated as a matrix equation for thetwo-channel(ππ andKK̄) Muskhelishvili–Omnès prob-
lem, which, by an appropriate parametrization of the two-channelT-matrix, depends on three input
functions, theππ phase shift as well as modulus and phase of theππ → KK̄ amplitude. With sim-
ilar assumptions on the asymptotics of form factor(s) and phases as before, the solution then de-
pends on the normalizations of the scalar form factors of both pion and kaon ats= 0, which, while
not fixed exactly by gauge symmetry as in the case of the vector channel, can be very well con-
strained using chiral perturbation theory and lattice QCD simulations; see Ref. [9] and references
therein for details. This holds for both scalar quark–antiquark source terms that can be considered,
(ūu+ d̄d)/2 ands̄s, with obviously very different coupling strengths to pions and kaons.

An extremely important aspect of the discussion above is that the form factors characterizing
the final-state interactions between two pions areuniversal, and may be applied in many different
contexts in a model-independent way. In particular, they may be used to improve on the hadron
physics aspects of new physics searches in low-energy precision studies. As an example, we discuss
the lepton-flavor-violating decayτ → µπ+π− [10]. It may be investigated based on an effective
Lagrangian of the form

Leff =
λV

2
1
2

(

ūγαu− d̄γαd
)(

µ̄γατ
)

+

[

λ n
S

2
1
2

(

ūu+ d̄d
)

+
λ s

S

2
s̄s

]

(

µ̄τ
)

. (2.3)

The effective current–current couplingsλV (vector–vector) andλ n/s
S (scalar–scalar) can be calcu-

lated from any underlying fundamental new-physics model; in Ref. [10],they have been derived
from supersymmetric particle exchange with interactions given by an R-parity-violating superpo-
tential. The matrix elements for the quark currents of Eq. (2.3) creating two pions out of the vacuum
then preciselydefinethe vector and scalar form factors discussed above.

In Fig. 2, we show the differential ratesdΓ(τ → µπ+π−)/ds, wheres is the invariant mass
squared of theπ+π− pair, assuming total dominance by one of the currents respectively, and setting
the corresponding effective coupling arbitrarily to 1 GeV−2. The bands in the scalar form factors
are given by the uncertainty in the kaon form factor normalizations. We emphasize that both
the spectral forms and the normalizations are constrained in a fully model-independent way: no
assumptions on dominance by certain resonances (e.g., theρ0(770) or the f0(980)) or their specific
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Figure 2: The predicted signals fordΓ(τ → µπ+π−)/ds for the currents (a)(ūγαu− d̄γαd)/2, (b) (ūu+
d̄d)/2, and (c) ¯ss. In all cases the effective coupling constant is set to 1 GeV−2. Figure taken from Ref. [10].

quark substructure need to be made, in contrast to alternative approaches [11]. Experimental upper
limits on the decayτ− → µ−π+π− have been given by the Belle collaboration [12] with and
without kinematical cuts to isolate certain resonances. Integrating our theoretical spectra as shown
in Fig. 2 in the appropriate invariant-mass ranges, we can translate these intolimits on the products
of fundamental coupling constants and supersymmetric masses, which prove significantly more
restrictive than given in the literature so far [10].

3. Dispersion relations for three-body decays

The application of dispersion relations to three-body decays is more complicated than the
treatment of form factors due to the more involved analytic structure, and thepossibility of crossed-
channel rescattering. Here, we concentrate on the three-pion decaysof the lightest isoscalar vector
mesons,ω/φ → π0π+π− [13]. We start by decomposing the amplitudeM (s, t,u) according to

M (s, t,u) = i εµναβ nµ pν
π+ pα

π− pβ
π0 F (s, t,u) , (3.1)

wherenµ is the polarization vector of the decayingω/φ . Due to Bose symmetry, only partial
waves of odd angular momentum contribute; neglecting discontinuities of F- and higher partial
waves,F (s, t,u) can be further decomposed asF (s, t,u) = F (s)+F (t)+F (u). The unitarity
relation forF (s), assuming elastic final-state interactions, then leads to the following expression
for the discontinuity ofF (s):

discF (s) = 2i
{

F (s)+ F̂ (s)
}

×θ
(

s−4M2
π
)

×sinδ 1
1 (s)e

−iδ 1
1 (s) , (3.2)

whereδ 1
1 (s) is theππ P-wave phase shift. Were it not for theinhomogeneityF̂ (s), Eq. (3.2) would

correspond to the discontinuity equation of the vector form factor, Eq. (2.1). The functionF̂ (s) is

4
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Figure 3: Successive iteration steps of real (left panel) and imaginary (right panel) part of the amplitude
F (s) for φ → 3π. The vertical dashed lines denote the physical region of thedecay.

given by angular averages overF according to

F̂ (s) = 3
〈(

1−z2)
F

〉

(s) ,
〈

zn f
〉

(s) =
1
2

∫ 1

−1
dzzn f

(

1
2

(

3s0−s+zκ(s)
)

)

,

s0 =
M2

V +3M2
π

3
, κ(s) = λ 1/2(M2

V ,M
2
π ,s)

√

1− 4M2
π

s
, (3.3)

whereλ (x,y,z) = x2+y2+z2−2(xy+xz+yz), andMV is the mass of the decaying vector meson.
The angular integration including theκ(s) function is non-trivial and generates a complex analytic
structure, with three-particle cuts due to the fact thatω andφ are unstable and decay [13]. The
analog to the Omnès solution (2.2) are then integral equations involving the inhomogeneity

F (s) = Ω1
1(s)

{

a+
s
π

∫ ∞

4M2
π

ds′

s′
sinδ 1

1 (s
′)F̂ (s′)

|Ω1
1(s

′)|(s′−s)

}

, (3.4)

with the subtraction constanta. The number of subtractions is chosen such that the dispersion
integral is guaranteed to converge.

Equations (3.3) and (3.4) can be solved iteratively: starting from an arbitrary input function
F (s), we can calculate the inhomogeneitŷF (s) according to Eq. (3.3), from which a newF (s) is
obtained from Eq. (3.4); the procedure is stopped once a fixed point ofthe iteration is reached with
sufficient accuracy. In the example discussed here, see Eq. (3.4), the subtraction constant works
as an overall normalization factor of the solution; we match it to the partial decay width, but note
that anormalizedDalitz plot distribution is subsequently a pure prediction. While the result is
independent of the starting function, for the case at hand, we chooseF (s) = aΩ1

1(s) in order to
allow us to quantify crossed-channel effects (generated by the iteration) in a plausible way.

Figure 3 shows the result of such an iteration for the decayφ → 3π: it converges fast, with
the third iteration already all but indistinguishable from the final result. The difference to the
starting point of the iteration, the Omnès function without any crossed-channel rescattering, is,
however, quite significant. The picture forω → 3π (not shown here) is qualitatively similar, with
convergence reached even faster (after two iterations, see Ref. [13]).
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Figure 4: Dalitz plots forω → 3π (left) andφ → 3π (right), normalized by the P-wave phase space.

The resulting Dalitz plots for bothω → 3π andφ → 3π are shown in Fig. 4, normalized by
the P-wave phase space factor and using the kinematical variables

x=
t −u√
3RV

, y=
s0−s
RV

, RV =
2
3

MV(MV −3Mπ) . (3.5)

Comparison to the experimentalφ → 3π Dalitz plot of Ref. [14] shows that crossed-channel effects
improve the reducedχ2 from 1.71. . .2.06 (withF (s) = aΩ1

1(s)) to 1.17. . .1.50; further improve-
ment and perfect agreement with the data can be achieved by introducing an additional subtraction
constant in Eq. (3.4).

4. Dispersion relations for transition form factors

The ω/φ → π0γ∗ transition form factors, in addition to being interesting quantities in their
own right, have attracted further attention due to their link to the doubly-virtualπ0 form factor
Fπ0γ∗γ∗(M

2
π0,q2

1,q
2
2) for fixed isoscalar photon virtualities,q2

1 = M2
ω . The latter, in turn, fixes the

strength of theπ0 pole term in the hadronic light-by-light scattering contribution to the anomalous
magnetic moment of the muon, which may soon constitute the dominant theoretical uncertainty in
the determination of that quantity. See in particular Ref. [15] for an overview of the interrelations
of the various form factors in this context, and Ref. [16] for an outline ofhow to utilize dispersive
methods for an analysis of theπ0 form factor itself.

Assuming that theω/φ → π0γ∗ transition form factorfVπ0(s) (V = ω/φ ) is dominated byππ
intermediate states, one can derive the unitarity relation [17, 18]

disc fVπ0(s) =
is

48π
σ3(s) f1(s)F

V∗
π (s) , σ(s) =

√

1− 4M2
π

s
, (4.1)

where f1(s) = F (s) + F̂ (s) is the previously determinedV → 3π partial-wave amplitude and
FV

π (s) = F1
1 (s) is the pion vector form factor. This relation leads to a once-subtracted dispersion

relation

fVπ0(s) = fVπ0(0)+
s

96π2

∫ ∞

4M2
π

ds′
σ3(s′) f1(s′)FV∗

π (s′)
s′−s

, (4.2)

where the subtraction constant is fixed by the real-photon partial widthΓV→π0γ . In principle the
asymptotic behavior of the partial-wave amplitude and the pion vector form factor even allows

6
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Figure 5: Left: normalizedω → π0γ∗ form factor. We show pure VMD (with a finite width, dashed line),
the results of a chiral Lagrangian treatment with explicit vector mesons [19] (yellow band), the dispersive
solution for f1(s) = aΩ(s) (blue band), and the full dispersive solution with one subtraction in theV → 3π
partial-wave amplitude (red band). The data is taken from Ref. [20]. Right: normalizedφ → π0γ∗ form
factor. We compare pure VMD (dashed line), the dispersive solution for f1(s) = aΩ(s) (blue band), and the
full dispersive solution with one subtraction (red band) and two subtractions (yellow band).

for an unsubtracted dispersion relation. We have calculatedΓV→π0γ by a sum rule forfVπ0(0)
and find that it is saturated to about 90–95% by two-pion intermediate states, thus justifying the
approximation of neglecting inelastic effects.

In Fig. 5 we display the numerical results for the normalized transition form factor FVπ0(s) =
fVπ0(s)/ fVπ0(0). Although we significantly improve on the vector-meson-dominance (VMD) re-
sult, we cannot reproduce the steep rise in the experimental data. Phenomenological monopole fits
of the transition form factor lead to a pole close to the border of phase space of the decay, which
cannot be accommodated within an approach that respects the strictures ofanalyticity and unitar-
ity. We also find that three-particle effects in the partial-wave amplitude (compare the blue and red
bands in the left panel of Fig. 5) do not perturb the spectrum in a way observable at the current
precision level of the data.

We have to remark that ourω → 3π partial-wave amplitude is not yet backed up by experi-
mental data; this caveat is absent in the case of theφ → π0γ∗ transition form factor. The twice-
subtracted partial-wave amplitude is an extremely precise representation of data, and thus all input
in this channel is well constrained. Our numerical results again show enhancement over VMD,
while crossed-channel rescattering effects are not particularly strong. We wish to point out that
for this decay, the physical decay region encompasses the full energyrange of theρ resonance; in
contrast toω → π0γ∗ (or the OZI-favoredφ → ηγ∗ transition, where in the limit of isospin conser-
vation theω is the relevant resonance structure influencing the dilepton spectrum), any anomalous
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enhancement should therefore be directly accessible. We therefore strongly advocate an exper-
imental investigation ofφ → π0ℓ+ℓ− in order to significantly advance our understanding of the
vector-meson transition form factors.

Acknowledgments. I would like to thank the organizers of “Confinement X”, and in partic-
ular those of the section on “QCD and New Physics”, for the invitation to a mostinteresting and
stimulating conference; and all my collaborators, who have shared their insights on the various
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