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1. Introduction

Recently BaBar collaboration measured the semileptonic branching fractions B→ Dτν̄ and
B→ D∗τν̄ that are above their Standard Model predictions [1]. The experiment reports

R(D) =
B(B̄→ Dτν̄τ)

B(B̄→ Dµν̄µ)
= 0.440±0.058stat.±0.042syst. , (1.1)

for the decay with pseudoscalar D and the result was normalized with respect to the decay with light
lepton in the final state in order to cancel Vcb and form factor parameterization in the theoretical
prediction of this observable. Before this result was published a prediction based on the lattice-
calculated form factors had been made [2] ,

R(D)SM = 0.296±0.016 . (1.2)

The discrepancy immediately raised interest in the flavor community to explain it within one of the
well-motivated NP models. On the one hand, the SM charged-current contribution to this decay
hints that possible NP contributions should be present at tree-level. On the other hand, the SM
prediction requires the B→ D form factors whose knowledge from the lattice is limited to high-q2

region where phase space is small.
In this work we have revisited the theoretical prediction of B→ Dτν̄ in the SM in a manner

that maximally employs the available experimental information on the form factors from previ-
ously measured B→ D`ν̄ where ` stands for e,µ [3]. Next, we parameterize beyond the Standard
Model contributions to this decay mode in the effective Hamiltonian language, focusing on inter-
actions that preserve lepton flavor universality and induce b→ c transitions via scalar and tensor
interactions. Assuming presence of either scalar either tensor operator we derive bounds on their
respective Wilson coefficients at 1- and 2-σ level, taking into account experimental and theoretical
uncertainties.

2. Differential decay width

In the SM the amplitude for hadronic transition D→ P is given in terms of vector and scalar
form factors, F+(q2) and F0(q2), defined as

〈D(p′)|c̄γµb|B̄(p)〉=
(

pµ + p′µ −
m2

B−m2
D

q2 qµ

)
F+(q2)+

m2
B−m2

D

q2 qµF0(q2) . (2.1)

The momentum transfer is denoted by q = p− p′ and when squared coincides with the invariant
mass of the leptons, q2 = (pν̄ + p`)2. In the SM, the differential width of B→ D`ν̄ decay valid for
finite lepton mass m` is

dB(B̄→ D`ν̄`)

dq2 = τB0
G2

F |Vcb|2

192π3m3
B

[
c`+(q

2)|F+(q2)|2 + c`0(q
2)|F0(q2)|2

]
= |Vcb|2B0|F+(q2)|2

[
c`+(q

2)+ c`0(q
2)

∣∣∣∣ F0(q2)

F+(q2)

∣∣∣∣2
]
, (2.2)
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Figure 1: Vector and scalar form factor weight functions for decay B̄→ Dτν̄τ are shown in the left plot.
Dashed curve corresponds to cτ

0(q
2), while the solid curve corresponds to cτ

+(q
2). In the right plot the same

cτ
+,0(q

2) are plotted together with cµ

+(q
2) (red curve), the weight function in the case of massless muon in

the final state.

where

c`+(q
2) = λ

3/2(q2,m2
B,m

2
D)

[
1− 3

2
m2
`

q2 +
1
2

(
m2
`

q2

)3
]
,

c`0(q
2) = m2

` λ
1/2(q2,m2

B,m
2
D)

3
2

m4
B

q2

(
1−

m2
`

q2

)2(
1− m2

D

m2
B

)2

,

λ (q2,m2
B,m

2
D) = [q2− (mB +mD)

2][q2− (mB−mD)
2] . (2.3)

The overall factor B0 is defined by Eq. (2.2):

B0 =
G2

F

192π3m3
B

τB . (2.4)

The scalar form factor F0 is multiplied by c`0(q
2) that is nonzero only when the lepton in the final

state is massive. Therefore only the B→ Dτν̄ mode is sensitive to exchanges of charged Higgs in
the context of two Higgs doublet models or alternative scenarios that induce scalar operators [4, 5,
6, 7].

The q2-dependence of the functions c`+(q
2) and c`0(q

2) are shown in Fig. 1. On the left-hand
side plot one observes that the contribution of scalar form factor is enhanced by large cτ

0(q
2) that

partially compensates smallness of F0(q2).

3. B→ D`ν̄ with minimal theory input

In this section we demonstrate, how one can maximally employ available experimental data
to test for consistency of the SM in observable R(D). Semileptonic decays with light lepton (` =
e,µ) have enabled extraction of |Vcb|. Usual approach in the literature has been to make the SM
theoretical prediction of the q2-spectrum at the maximal lepton recoil point q2

max = (mB−mD)
2,

where the two hadrons are both at rest, and where the corrections to the heavy quark limit have
been calculated. On the other hand, the experimental data close to q2

max have virtually useless
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Figure 2: In the left plot we show the binned spectrum of B̄→ Dµν̄ below 8GeV2 (right vertical grey
line) as measured by the BaBar collaboration [9]. Above 8GeV2 lattice QCD simulations in quenched
approximatian (empty symbols) [10], and those in which Nf = 2+ 1 dynamical flavors are included (filled
symbols) [11] are indicated. First grey line on the left denote the τ threshold at q2 = m2

τ . Ratio of B→ D
form factors obtained in the same lattice simulations are shown on the right plot.

statistics due to small phase space, and experiments rely on the CLN shape of the form factor
F+(q2) to fit the differential decay spectrum to data at low to moderate q2 and extrapolate it to
q2

max [8, 9].
In order to maximally use the experimental data we propose a different path for both light and

heavy leptons in the final state of B→D`ν̄ . The vector form factor can be extracted from the BaBar
measurement of the spectrum with light leptons in the final state. This procedure is viable below
q2 = 8GeV2, where the errors in bins are small [9]. Prediction of B→ Dτν̄ in q2 ∈ [8GeV2,q2

max]

region will rely on the lattice QCD results for the vector form factor [10, 11] as seen in the left
panel of Fig. 2. Notice that below the above procedure relies on the input value of Vcb only at high
q2 where lattice data is used.

Now we can express both branching fraction entering R(D) as integrals over the three kine-
matical regions denoted in Fig. 2

B(B̄→ Dµν̄µ) = B0

∫ 8GeV2

m2
µ

cµ

+(q
2)|VcbF+(q2)|2expdq2

+|Vcb|2B0

∫ q2
max

8GeV2
cµ

+(q
2)|F+,latt(q2)|2dq2 , (3.1)

where q2
max = (mB−mD)

2. The phase space integral for decay with heavy τ contains the contribu-
tion of the scalar form factor and is also split at q2 = 8GeV2

B(B̄→ Dτν̄τ) = B0

∫ 8GeV2

m2
τ

|VcbF+(q2)|2exp

[
cτ
+(q

2)+ cτ
0(q

2)

∣∣∣∣ F0(q2)

F+(q2)

∣∣∣∣2
]

dq2

+|Vcb|2B0

∫ q2
max

8GeV2
|F+,latt(q2)|2

[
cτ
+(q

2)+ cτ
0(q

2)

∣∣∣∣ F0(q2)

F+(q2)

∣∣∣∣2
]

dq2 . (3.2)

We emphasize again that the partial decay rates at low-q2 do not rely on the input value of Vcb, since
|VcbF+(q2)| is available experimentally. A suitable observable with this pleasing property should
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be defined as a ratio of partial decay rates, i.e.,

R(D)
∣∣
q2≤8GeV2 =

B(B̄→ Dτν̄τ)

B(B̄→ Dµν̄µ)

∣∣∣∣
q2≤8 GeV2

, (3.3)

and would depend only on |F0/F+| that is well under control theoretically as we show below.
The theoretical prediction of R(D), as defined in Eq. (1.1), requires in addition the SM value of
Vcb and calculation of the vector form factor at high q2. For the latter we take the lattice results
of Refs. [10, 11] and fit them to a dipole parameterization. The global fits of the SM to flavor
observables yield |Vcb|= 0.0411(16), a value that we use above 8GeV2 [12].

The ratio of scalar-to-vector form factor is constrained to be 1 at q2 = 0 by construction and
indicates, together with high q2 results of lattice QCD, a linear behaviour (see Fig. 2)

F0(q2)

F+(q2)
= 1−α q2 . (3.4)

We use the value α = 0.020(1)GeV−2 that is consistent with different theoretical approaches (see
e.g. [10, 11, 13, 14, 15]). The above procedure gives finally

R(D) = 0.31±0.02 , (3.5)

which is less than 2σ below the BaBar result (1.1).

4. Constraint on NP effective Hamiltonian

The SM effective Hamiltonian is extended to include operators that are scalars, tensors, or
vectors, their dimensionless couplings labelled as gS, gT , and gV , respectively. We assume that the
lepton flavor universality is respected by all couplings on the Lagrangian level. We do not invoke
operators that contain a right-handed neutrino.

Heff =−
√

2GFVcb
[
(c̄γµb)( ¯̀Lγ

µ
νL)+gV (c̄γµb)( ¯̀Lγ

µ
νL)

+gS(µ)(c̄b)( ¯̀RνL)+gT (µ)(c̄σµνb)( ¯̀Rσ
µν

νL)
]
+h.c. (4.1)

All couplings scale as gV,S,T ∝ m2
W/m2

NP, and mNP is the new physics scale. The differential decay
width in the presence of NP operators is

dB(B̄→ D`ν̄`)

dq2 = |Vcb|2 B0 |F+(q2)|2
{
|1+gV |2c`+(q

2)+ |gT (µ)|2c`T (q
2)

∣∣∣∣FT (q2,µ)

F+(q2)

∣∣∣∣2
+ c`TV (q

2) Re
[
(1+gV )g∗T (µ)

FT (q2,µ)

F+(q2)

]
+

∣∣∣∣(1+gV )−
q2

m`

gS(µ)

mb(µ)−mc(µ)

∣∣∣∣2 c`0(q
2)

∣∣∣∣ F0(q2)

F+(q2)

∣∣∣∣2
}

, (4.2)

where

c`T (q
2,µ) = λ

3/2(q2,m2
B,m

2
D)

2q2

(mB +mD)2

[
1−3

(
m2
`

q2

)2

+2
(

m2
`

q2

)3
]
,

c`TV (q
2,µ) =

6m`

mB +mD
λ

3/2(q2,m2
B,m

2
D)

(
1−

m2
`

q2

)2

. (4.3)
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Figure 3: Regions of allowed values for gS(mb) and gT (mb), compatible with experimentally measured
R(D). The small region within the solid, dashed and dot-dashed white curves correspond to the respective
1-, 2- and 3-σ compatibility with both B(exp)(B̄→Dτν̄τ) and B(exp)(B̄→Dµν̄µ). The thick dot represents
the Standard Model, namely gS,T (mb) = 0.

The tensor form factor FT (q2,µ) is defined as

〈D(p′)|c̄σµνb|B̄(p)〉=−i
(

pµ p′ν − p′µ pν

) 2 FT (q2,µ)

mB +mD
. (4.4)

While the vector nature of weak currents has been thouroughly tested and are compatible with
gV = 0, scalar gS(µ) and tensor gT (µ) operators are not as constrained. gS(µ) 6= 0 induces the left-
right operator and lifts the helicity suppression in B̄→ Dτν̄ and B̄→ Dµν̄ decays. Same operator
is enhanced by the factor m2

D/m2
c with respect to the left-left (SM) contribution to the D0− D̄0

mixing amplitude. Furthermore a noticable effect could also be seen in D→ V γ decays that are
governed by loops containing the down-type quarks and are therefore sensitive to gS(µ) 6= 0 [16].

Using R(D) alone we get a very loose constraint on gS(mb) while we require gV = gT (mb) = 0
(contours on the left-hand plot in Fig. 3). Requiring in addition the compatibility of the theoretical
expression for B(B̄→Dµν̄µ) obtained by using Eq. (4.2) and the measured value [9], restricts the
allowed gS(mb) to a small region also indicated in Fig. 3. For example, when gS(mb) is real then
the 1σ compatibility with experiment allows−0.37≤ gS(mb)≤−0.05, while the 3σ compatibility
amounts to−0.53≤ gS(mb)≤+0.20. The statistical error in Eq. (1.1) is treated as Gaussian, while
the systematic errors and uncertainties with respect to the form factors are treated as uniform.

If we allow for gT (mb) 6= 0 in Eq. (4.2) then the possible values that are compatible with
R(D) are those in the contour plot shown in the right-hand plot of Fig. 3. The needed tensor
form factor has not been computed, to our knowledge, on the lattice nor in the QCD sum rules.
The computation in the model of ref. [13] shows that FT (q2)/F+(q2) = 1.03(1) is a constant, in
agreement with naive expectations based on the pole dominance. As before, R(D) alone is not
constraining strongly the possible values of gT (mb) whereas taking into account the constraint from
measured B(B̄→ Dµν̄µ) [9] shrinks the allowed region, as shown in the right-hand plot in Fig. 3.
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If Im gT (mb) = 0, we obtain 0.3≤ gT (mb)≤ 1.5 and −0.6≤ gT (mb)≤ 2.1, from the requirement
of respective 1- and 3σ compatibility with both experimental R(D) and B(B̄→ Dµν̄µ).

5. Conclusions

The result for R(D) could be an indication of new physics should the significance of incompat-
ibility with the Standard Model raise to at least 3σ . The compatibility with the Standard Model can
be tested experimentally, with a minimal hadronic input, as discussed in this letter. Here we used
the lattice QCD results for F+(q2) at larger q2’s because the full branching fractions were reported
in Ref. [1]. Thus we have found R(D) = 0.31±0.02 where the significance of the discrepancy with
Eq. (1.1) to be below 2σ .

If, instead of comparing the full branching fractions of both decay modes, the experimenters
cut at about q2 ≈ 8 GeV2, then the shape of the needed vector form factor including the factor of
|Vcb| could be reconstructed from the differential branching fraction of B̄→ Dµν̄ [4, 5]. The only
theoretical hadronic quantity needed then is the slope of the form factor ratio (3.4), which is quite
accurately known from lattice QCD with the values that agree with quark models and with recent
QCD sum rule studies. By using the vector form factor multiplied by |Vcb| data from Ref. [9] only,
and by integrating the decay rates up to q2

cut = 8 GeV2, we obtain

B(B̄→ Dτν̄τ)

B(B̄→ Dµν̄µ)

∣∣∣∣
q2≤8 GeV2

= 0.20±0.02 . (5.1)

Allowing for departures from the Standard Model, while keeping lepton flavor universality
which has been experimentally verified to a very good accuracy [17], the measured R(D) and
B(B̄→ Dµν̄µ) impose quite strong constraints on the new physics scalar and tensor effective
couplings gS,T (mb).
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